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LOSS FACTOR  AND  RESONANT  FREQUENCY OF 
VISCOELASTIC  SHEAR-DAMPED  STRUCTURAL COMPOSITES 

by  Thomas F. Derby  and  Jerome E. Ruzicka 

ABSTRACT 

An investigation is conducted to evaluate   the loss factor ,   resonant  
frequency  and  thermal  conductivity  characteristics of structural   composites 
with  viscoelastic  shear-damping  mechanisms.  Theoretical   solutions  and 
graphical  design  data  for  damping  and  resonant  frequency  are  developed  for 
four types of viscoelastic  shear-damped  structural   composites:   two-elastic- 
element,  symmetrical three-elastic-element,  unsymmetrical  three-elastic- 
element  and N identical-elastic-laminate  configurations.   The  equations 
and  design  procedures  for  predicting loss factor  and  resonant  frequency  are 
verified by the   resu l t s  of experimental  measurements  made  on  laboratory 
beam  specimens.  Thermal  conductivity  characteristics of laminated  visco- 
elastic shear-damped  plates  are  investigated  theoretically  and  experimentally, 
with  consideration  given  to  methods  for  increasing  thermal  conductivity  and 
the  subsequent effect on structural  damping. 
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LOSS FACTOR  AND  RESONANT  FREQUENCY OF 
VISCOELASTIC  SHEAR-DAMPED  STRUCTURAL COMPOSITES 

by Thomas F. Derby and  Jerome E. Ruzicka 
Barry Controls 

Division of Barry Wright  Corporation 
Watertown,  Massachusetts 

SUMMARY 

An ana lys is  of the loss factor  and  resonant  frequency  characterist ics of 
viscoelastic shear-damped  structural  composites  has  been  conducted. The 
structural   composites  considered  included  two-elastic-element,   symmetrical  
three-elastic-element,  unsymmetrical  three-elastic-element  and N identical-  
elastic-laminate  configurations.  

The mathematical  relations  for loss factor  are  typically  dependent  upon 
three  parameters:   the  geometrical   parameter,   the  uncoupled  shear  parameter 
and   the   v i scoe las t ic  material loss factor. The resonant  frequency  analyses 
demonstrate  the  validity of assuming  the  effective  flexural  rigidity of the 
composite  structure  equals  the  real  part of the  complex  flexural  rigidity. 

Extensive  design  graphs for the  prediction of structure loss factor  and 
resonant  frequency  have  been  developed  for  wide  parametric  variations of the 
viscoelastic  damping  material   loss  factor  and  the  geometrical   and  uncoupled 
shear  parameters.  The design  procedures  presented  allow  rapid  determination 
of damping  and  resonant  frequency  characteristics  without  the  necessity of an  
i teration  process.   Discussion of a design example demonstrates  the applica- 
tion of the  design  procedure. 

predictions of loss factor  and  resonant  frequency  for a set of 44 different  beam 
specimens  that  employed  aluminum  and/or  fibre-glass  structural  materials. A 
total of 2 2 6  loss   factor   and 164  resonant  frequency  measurements  were  made at 
various  free-free  bending  modes of the  beam  specimens.  A s ta t i s t ica l   ana lys i s  
of this  data  compared to the  theoret ical   values  of loss factor  and  resonant  fre- 
quency  indicated  that  the loss factor  difference  had  a  mean  value of 1.5 percent 
and a standard  deviation of approximately 25 percent,  whereas  the  resonant  fre- 
quency  difference  had a mean  value of 0.7 percent  and a standard  deviation of 
approximately 9 percent. It is concluded  that  the  theory  and  design  procedures 
for  loss  factor  and  resonant  frequency is satisfactory  within  accepted  engineer- 
ing  practice.  

damped  laminated plates have  been  evaluated.  Addition of a high  thermal 
conductivity  material to the  viscoelastic  material   increases  the  thermal  conduc- 
tivity of the  structural  composite:  however, it appears   tha t   th i s   can   be   done  
only at the expense of structural  damping  and  the peel strength of the  laminated 
plate. 

Laboratory  experiments  have  been  performed  to  verify  the  theoretical 

Methods  for  increasing  the  thermal  conductivity of viscoelast ic   shear-  



SECTION 1: INTRODUCTION 

Design  procedures  and  graphs  have  previously  been  developed  to 

predict  the  damping  properties of structural  composites  comprised of two 
elastic elements   separated by a viscoelast ic   layer .  The resul ts  of that   study 
are  reported  in NASA Contract  Report  CR-742, I '  Damping of Structural 
Composites  with  Viscoelastic  Shear-Damping  Mechanisms" [ Ref. 11. The 

study  reported  herein  results  in  design  procedures  and  graphs  to  determine  the 

damping  properties  and  resonant  frequencies of structural  composites  comprised 
of two elastic elements ,   three elastic elements and  any  number of identical  
elastic laminates separated by thin  layers of viscoelastic material.  The 

analyses for  these  structures,   mainly  contained  in  the  appendices,   are  based 

on,  and  are  an  extension of, exis t ing  theoret ical   analyses  [Ref. 2-81 . The 
measure of 'damping  used in this  report, as wel l  as in  the  previous  report, is 
the  s t ructure   loss   factor ,   which may  be  related  to  other measures of damping 

such  as the  logarithmic  decrement  and  the  fraction of critical  damping [ R e f .  2 
and 91. 

The design  procedures  developed  herein  are  easier  to  use  than  those 
developed  in  Reference 1 in  that   the  structure loss factor  can  be  read  directly 

from the  design  graphs  and  there is no  iteration  process  required. The major 

difficulty i n  predicting  structure  loss  factor  has  been  in  determining  one of the 
parameters  in  the  expression  for  the  loss  factor;   namely,   the  shear  parameter X. 
For the  present  study, it has  been  determined  that ,   in  the  functional  relation- 

ship  for  the  structure  loss  factor V , the  shear  parameter X may be  replaced 
by the  uncoupled  shear  parameter X. , as   fol lows:  

where is the  loss   factor  of the  viscoelastic  shear-damping  material ,  is 
defined  as  the  uncoupled  shear  parameter,   and Y is defined  as  the  geometrical  

parameter. 
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The  damping  material  loss  factor 6 is the  ratio of the  imaginary  and 
real  components of the  complex  shear  modulus G* = G'  + i G", as follows 

B = G ~ G '  

where GI' and GI are   the loss modulus  and  storage  modulus of the  visco- 

elastic material ,   respectively.  The uncoupled  shear  parameter x0 is similar 
to  the  shear  parameter X used  previously [ R e f .  1 3 ;  however, its dependence 
on  the  properties of the  viscoelastic material  and  the  frequency of vibration is 
considerably  simpler. The uncoupled  shear  parameter & can   be   expressed  
as follows 

X, = C(G7f) 

where C is defined as the  shear  parameter  coefficient  which  depends  on  the 
cross-section  geometry of the  structure  and  the  modulus of elast ic i ty  of the 
elastic  elements,   but is independent of the  properties of the  vi.scoelastic 
material  and  the  frequency of vibration f .  The geometrical  parameter Y is 
also only a function of the  cross-section  geometry of the  structure  and  modulus 
of elasticity,   and may be  expressed  as   fol lows [ R e f .  11 

where (EI)a is the  flexural  rigidity of the  structural   composite  when its e l a s t i c  
members  are  uncoupled  and (EI), is the  flexural  rigidity of the  structural  
composite  when its elastic members  are  completely  coupled. The geometrical 
parameter  has  been  determined  and  graphically  displayed  for a wide  variety of 

cross-sect ions of the  type of structural  composites  considered  in  this 
report [Ref .  11. 

The present  investigation is concerned  with  the  development of proce- 
dures  and  graphical  data  useful  in  the  design of viscoelastic  shear-damped 
composite  structural  beams  and  the  experimental  verification of theorteical  
predictions of structure loss factor,   resonant  frequency,  and  steady-state 
frequency  response.  Analyses  and  experiments  have  been  limited  to  structural 
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composite  designs  which  incorporate  thin layers of relatively soft viscoelast ic  

damping  material;  consequently,  the  results of the  studies  are  particularly 
applicable to structural  composites  that  incorporate  thin  self-bonding  adhesive 

damping  layers. The investigation  encompasses  the  following  studies: 

(1) Theoretical  analysis of structure loss factor. 

(2)  Theoretical  analysis of structure  resonant  frequency. 

(3) Development of design  procedures  and  graphs  for  predicting  the 
structure loss factors  and  resonant  frequencies. 

(4) Comparison of theoretical to experimental  results  pertaining to 
structure loss factor,  resonant  frequency,  and  transmissibility of 

various  structural  composites. 

(5) Thermal  conductivity of laminated elastic and  viscoelast ic   plates .  

These  five  studies  are  discussed,  respectively,  in  the  following  sections of 
the  report. 

4 



SECTION 2: THEORETICAL LOSS FACTOR  ANALYSES 

With  one  exception,  the  method of calculating  theoretical   structure 
loss factors  employed  herein  follows  fairly  closely  the  analysis  presented  in 
Reference  2(pp. 55-61). The  one  exception is for  structures  having visco- 
elastic layers  not  parallel  to the  neutral   plane of bending'and is d i scussed  in  
the  last subsection of this   sect ion.  For  composite  structural beams comprised 
of elastic elements  separated  by  layers of viscoelastic material parallel to the 
neutral  plane of bending,  the  following  general   discussion is applicable.  

General Loss Factor  Equations 

The s t ructure   loss   factor  q is defined as the  ratio of the  imaginary 
part of the  complex  flexural  rigidity to the  real   part ,   as  follows 

where (EI)* denotes  the  complex  flexural  rigidity of the  structural   composite.  
The complex  flexural  rigidity is obtained by considering  the  structural  composite 

to  be  in  pure  bending so tha t  

where M is the  applied  moment  and * a x is, the  resulting  curvature of the 

beam. The s teady-s ta te   response  of * a x to  the  input M = Mo e iwt is 

where  the  phase  angle 8 indicates   the  presence of damping. 

Evaluation of the  structure  loss  factor ?j by u s e  of Equation (5) 
requires  the  determination of the complex flexural  rigidity (EI)*.  The  method 
of determining (EI) * is to f i rs t   assume it is a real  number by considering  the 
shear  modulus of the  viscoelast ic   mater ia l  to be a real  number (i. e. , being 
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purely elastic). When  the  expression  for  flexural  rigidity is obtained,  the 

shear  modulus of the   v i scoe las t ic  material G is replaced by 

where G' is the  storage  modulus  (real  part)  of  the  shear  modulus  and f l  is 
the  loss   factor  of the  viscoelast ic   mater ia l .  

Consider  an  element of a beam  in  pure  bending as shown  in  Figures 1 

and 2.  Two assumptions  are  made. The first  is that  all of the  elastic 
elements  undergo  the same curvature ?!X! a x . The second is that  the  moments 
and  extensional  forces  acting  on  the  viscoelastic  layers  are  negligible 
compared to those  acting  on  the elastic elements;  i. e. , the  elastic elements 
are  considerably  st iffer  in  extension  than  the  viscoelastic  material .  The 

strain i n  each  e lement  is also shown  in  Figure 1. 

The total   bending  moment  can  be  considered  as  the s u m s  of the  bending 

moments  on  each elastic element. The bending  moment  on  each elastic element 

is composed of the  moment  required  to  bend  the  element  about its own  neutral 
plane  plus  the  net   extensional  force o n  the  e lement   t imes  the  dis tance from the 

element 's   neutral   plane  to  the  reference  composite  neutral   plane,  as follows 

M = (EI)* z= a Mii + rF ih i  , (9) 

where Mii is the  moment  exerted by the  forces  on  the ith element  about its 

own  neutral  plane, F; is the  net   extensional  force  on  the ith element,  and 

hi is the  dis tance froLm the  neutral  plane of the ith element to the  neutral  

plane of the  composite  beam at which  the  extensional  strain is zero. 

Since all elastic elements  are  assumed to undergo  the same 

curvature * a x ,  the  sum of the  individual  moments is 

EMii = LC(EI)il = (El) 0 ?Y? a x  

where (EI)o is the  sum of the  individual  elastic  element  f lexural  r igidit ies 
and is defined as the  uncoupled  flexural  rigidity of the  structural   composite.  

6 



It is shown  in  Appendix A that  

CFihi = ( CKiS:)Z *a'p ( a x )  

where 
Ki = EiAi = extensional  st iffness of the ith element 

Si = distance from the ith element to the  composite  neutral  plane 
for  the  case  where G = co (i.e.,  there is no  shearing) 

Z* = complex  coupling  parameter,  defined  by  Equation (A-1 6). 

The  geometrical  parameter Y may be  defined  as  follows  (Reference 1 , p. 8) 

where (EI)o , (EI), and  (EI)T  represent  the  uncoupled,  coupled  and  transfer 
flexural  rigidities of the  composite structure,  respectively.  Since  the 
transfer  flexural  rigidity (E& is given by 

Equations (9) through  (13) may be  combined  to  give 

(EI)* = (E110 C 1 +Z*YI  

It should  be  noted  that  when  the  shear  modulus of the  viscoelastic  material  G* 

is a complex  number,  the  coupling  parameter Z* and  the  flexural rigidi'cy (EI) * 
are  also  complex  numbers.  From Equations (5) and  (14),  the  following 
equation  for  structure loss factor is obtained 

Im(Z*)Y 
"? = 1 +Re(Z*)Y 



Specific  Equations  for  Four  Types of Structural  Composites 

The  following is a more detailed  discussion  pertaining to the  loss 
factors of structural  composites  comprised of: (1) two elastic elements: 

(2) a symmetrical  arrangement of three elastic elements;  (3)  an  unsymmetrical 

arrangement of three elastic elements:  and (4) any  number N of identical  
elastic laminates.  These  four  types of structural  composites are   i l lustrated 
in  general  in  Figure 3 and  particular  examples  are  shown  in  Figures 4 to 7 .  

Using  Equation (1 5) , the  only  two  quantities  required to ca lcu la te   the  
structure loss factor q are  the  geometrical  parameter Y and  the  complex 

coupling  parameter Z*. The equations  and  graphical  displays of the  geomet- 

rical  parameter Y for a wide  variety of c ross   sec t ions  of the  four  types of 

structural  composites  indicated  above  can  be  found  in  Reference 1. The 
equations  for  the  complex  coupling  parameter Z* are  derived  in  Appendix A 

for  the  first  three  types  and  in  Appendix B for  the  fourth  type of structural 
composites indicated  above. 

Two-Elastic-Element  Structural  Composites. - The complex  coupling 

parameter  for  two-elastic-element  structural  composites is given by 

Equation (A-41) as 

X* z* = - 
1 + x* 

where X* is defined as the  complex  shear  parameter  and is given by 
Equation (A-38) as 

where K. = E.A.  = extensional  st iffness of the  ith element[: see Figure J(a) 1 ; 
b and  are  the  width  and  thickness,   respectively,  of the   v i scoe las t ic  

layer: G* is the  complex  shear  modulus of the  viscoelast ic   mater ia l  [:see 
Equation  (8) 1; and p is the  wave  number  (p = 2n/X, where X is the  wave 

length) of the  particular  flexural  vibration  being  considered. A shear  
parameter X is defined as the  real   part  of X*; that  is X = Re(X*). Combining 

1 1 1  
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Equations (8) and (17) gives 

. . _. . . . - 

Combining  Equations (1 6) and (18) I the  complex  coupling  parameter 
can  be  wri t ten as 

1 +x+@ 1 2  
z* = + i  X 

(1 ++2+s. (1 ++)2+ p2 
(1 9); 

The  real  part of Z* is the  coupling  parameter Z ,  as given  in  Equation  (32) of 
Reference 1. Using  Equation (19) with  the  definition of the  structure loss 
factor as given by Equation (1 57 results  in  the  following  relation 

sxy 
rl = 1 + x ( Y + 2 ) + ( 1 + p 2 ) x 2 ( Y + 1 )  

which is ident ical   to   the  expression  given by Ungar  in  Equation  (4.2) of 
Reference 3 and also to  the  expression  given  in  Reference 1 as Equation  (27). 

SymmetricaLT-e-Elastic-Element Structural  Composites. - For the  
case of a symmetrical  three-elastic-element  composite  structure,  the 
equation  for  the  complex  coupling  parameter Z* as a function of the complex 
shear  parameter X* is identical   to  the  expression  given by Equation (16) for 
the  two-elastic-element case. However,  the  complex  shear  parameter  has a 
slightly  different  definition,  given by Equation (A-46) as 

where I(1 = E1 4 = extensional   s t i f fness  of element 1 [.see Figure 3(b)l  and  the 
other  terms  have  the same definition as for the  two-elastic-element case. With 
this  sl ight  change  in  the  definit ion of the  shear  parameter  al l  of the  discussion 
in  Reference 1 is applicable  to  the  symmetrical  three-elastic-element  structures. 
Of course , the  definitions  for  other  parameters  such as Y and (EI), wi l l   have 

to   be  those  appl icable  to the  symmetrical  three-elastic-element  structure. 
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Unsymmetrical Three-Elastic-Element  Structural  Composites, - For  the 

case of an  unsymmetrical  arrangement of a three-elastic-element  structure 
the  expression  for  the  structural  loss factor  cannot  be cast in   the  form of the 
two-elastic-element  structure.  AppendixA  provides  an  analysis of an  un- 
symmetrical  three-elastic-element  structure  having two of the  elements 
identical.  For  this case the  expression  for Z* given by Equation (A-55) is a 
function of three  parameters,  as follows 

where  dl2 = dl /& K12 = KJK2 = E1 A1/Ez A2 Csee Figure 3 (  c) 1 , and x* is the  
same shear  parameter as was defined  for  the  symmetrical  three-elastic-element 
structure as given  by  Equation (21) .  The  only  difference  in  calculating Z* 

for  the  unsymmetrical case is a slightly more  complicated  expression  and two 
additional  parameters.  Because of the  additional two parameters,   the  design 
procedures  for  the  two-elastic  -element  and  the symmetrical three-elastic- 

element cases are  not  applicable  for  the  unsymmetrical  three-elastic-element 
case. Appendix C presents  an  analysis  comparing  the loss factor of the 
symmetrical  and  the  unsymmetrica I three-elastlc-element  Structural  Components. 

N Identical-Elastic-Laminate Structural  Composites. - For t h e   c a s e  

of N ident ical   e las t ic   laminates ,   the   solut ion  for   the loss factor q is more 
complicated i n  that  it   requires  the  solution of N- 1 (for N odd)  or N (for 
N even)  linear  simultaneous  equations.  The  equations  to  be  solved  are 

developed in Appendix B. 

Definition of the  Uncoupled  Shear  Parameter 

As stated  previously,  the  uncoupled  shear  parameter X. is one of 

three  parameters (8, Y and Xo) that  completely  define  the  structure loss 
factor Q. The following  analysis  defines  the  uncoupled  shear  parameter X. 
and  relates  i t   to  the  shear  parameter X. 

For a l l  of the  structures  considered in this  investigation,  there is 
defined a complex  shear  parameter of the form 

X* = X(1 + is) (23) 

10 



where j3 is the  loss   factor  of the  viscoelast ic   mater ia l   and X is de f ined   a s  
a shear  parameter  and  has  the  general  form 

bG' X =  K HvP2 

where b is the  cross-sectional  length of the  viscoelastic layer ,   G'  is the 
real  part of the  complex  shear  modulus of the  viscoelast ic   mater ia l ,  K is an  
extensional  st iffness  or a modified  extensional  st iffness of an   e las t ic   e lement ,  

is the  thickness  of the viscoelastic layer(s)  and p is the  wave  number  for 
the  f lexural  wave  shape of the  composite  structural  beam. If the  wavelength of 
the  f lexural  vibration  wave X is known,  the  wave  number p is simply 
determined from p = 2r/h. However,  the  structural  designer is frequently 
interested  in  predicting  the  variation of the  structure loss factor q as a 
function of the  frequency of vibration f so that  the  degree of damping a t   t he  
various  structural   resonances  can  be  established. 

For a purely elastic structure  the  wave  number p is related  to  the 
frequency of vibration f as follows 

where w is the  weight  per  unit  length, g is the  gravitational  acceleration 
constant  and (EI) is the  flexural  rigidity of the  structure.  A s  an  extension of 
the  above  equation  to  apply  to  viscoelastic  shear-damped  structures,  (EI) is 

redefined as an  effective  flexural  rigidity (EI), of the  composite  structure.  If 
it is assumed  that  the  effective  flexural  rigidity (EI), is equal   to   the  real   par t  
of the  complex  flexural  rigidity as written  in  Equation (14) 

(EI), = Re[(EI)*I = (EIIo c1 + Re(Z*)Yl (26) 

then  the  loss   factor   expression of Ungar [ R e f .  31 is equivalent  to  that   obtained 
by  DiTaranto [ R e f .  41. This  equivalence is shown  in  Appendix D.  This 
assumption is also supported  by  the  analyses  to  determine  resonant  frequencies 
(see Section 3) and  subsequent  experimental  confirmation of the  design 
procedures  developed  based  on  this  assumption. 
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The effective flexural  rigidity (EI), has a value  between  the  completely 
uncoupled  flexural  rigidity (EI), and  the  completely  coupled  flexural  rigidity 
(EI)co. as follows 

where, from Equation (1 2) (EI), is given by 

The degree of coupling is indicated  by  the  value of Re(Z*) so tha t  Z = Re(Z*) 
is .defined as the  coupling  parameter  which  has  values  bounded  between  zero 

and  unity, as follows 

Using  the  definition Z = Re(Z*),  and  Equations (24), (25), and (26), the 

following  relation may be  written 

The quantity  in  brackets is defined as a shear  parameter coefficierlt C. An 

uncoupled  shear  parameter x0 is defined as the  value of X when Z = 0. 

Now the  shear  parameter X is defined as 

xa= c (F') 

These  equations are basic  in  the  development of the  design  procedures  and 
graphs as discussed  in   Sect ion 4.  
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Symmetrical  Three-Elastic-Element  Structural  Composites 
Having Viscoelastic Layers not Parallel to the  Neutral  Plane of Bending 

For the  general  case of a symmetrical  arrangement of a three-elastic- 
element  structure  for  which  the  outside  elements  are  not  separated  from  the 

inside  element by a layer  of viscoelastic material  parallel to the  neutral   plane 
of bending  but  have  other  geometries  (structural  composites  illustrated  in 
Figure  5(f)  -(h)  and  in  Figure 6) ,  the  preceding  analyses  do  not  apply.  Ungar 
used a strain  energy  approach to solve  for  the loss factors of more general 
structural  composites (Ref .  3 ) .  Starting  with  Ungar's  Equation (1.8) in  
Reference 3 ,  Appendix E derives  the  loss  factor  expression  for  the  general  case 
of symmetrical  three-elastic-element  structural  composites. This ana lys i s  
shows  that   the  only  difference  between  this  case  and  the  three-elastic-element 
structure  incorporating  viscoelastic  layers  parallel IO the  neutral   plane of 
bending is in  the  definit ion of the  length  b.  This is not  an  unexpected  result  
since  Ungar  found  the same to be  true  for  the  two-elastic-element  structure 
[ R e f .  31. When  the elastic elements  are  separated by viscoelastic  layers.  
parallel   to  the  neutral   plane of bending,  the  length b is the  width  of  the  layers.  
A more general  definition of the  length b is the  cross-sectional  length  of  one 
of the two symmetrical   viscoelastic  layers  experiencing  shear  deformation. 
This  definition  of b is more clearly  illustrared in the  table  on  the  following 
page  which  gives  the  value of b for each  of the  structural  composite  Cross- 

sections  shown i n  Figures 5 and 6. 

13 



STRUCTURAL  CONFIGURATION VALUES OF  LENGTH b 

Fig. 5 (a) -(e) B 

Fig. 5(f) perimeter of area A1 

Fig.  5(g) 2 (perimeter of a rea  AI ) 
~~~ ~~~~ ~~ 

Fig.  5(h) 4 ( A + H 1 )  

Fig.  6(a)-(c) 4 B  

Fig.  6(d) B + 2 H  

Fig. 6(e) 

A Fig.  6(h) 

(1 +;)B Fig.  6(g) 

G B  Fig.  6(f) 

A +  2H 
- 

Fig.  6(i) 2A 
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SECTION 3: THEORETICAL  RESONANT  FREQUENCY  ANALYSES 

An expression for the  resonant  frequencies of two-elastic-element 
structural  composites  was  given by  Equation (34) of Reference 1 as 

fr/& =G 
where 

f r  = resonant  frequency 

f, = a reference  frequency  which is determined by the 
beam  or  plate  natural  frequency  equation  using 
(EI), as the  flexural  rigidity 

Z = Re(Z*) = coupling  parameter 

Y = geometrical  parameter 

This  equation  was  derived by assuming  that  the  damped  resonant  frequencies 
could  be  determined by the  appropriate  undamped  natural  frequency  formula 
using  the  real   part  of the  complex  flexural  rigidity as an  effective  flexural 
rigidity. 

For all of the  types of structural  composites  considered  in  this  report, 
the  real  part of the  complex  flexural  rigidity,  and  hence,  the  effective  flexural 
rigidity is given by  Equation (26) as 

For flexural  vibrations of beams  and  plates,  the  natural  frequency  varies as 
the  square  root of the  flexural  rigidity so that  Equation (32)  is obtained from 
Equation (33) and is, therefore,  applicable to all of the  structural  composites 
considered  herein. Of course,   the  appropriate  values of (El), , Y ,  and Z 

must  be  used  for  the  particular  structure  being  considered.  Specific  equations 
for  the  uncoupled  flexural  rigidity (EI)o and  geometrical  parameter y for many 
structural  composites  are  given  in  Reference 1. The general  definition of Z* 

from which Z (the real  part of Z*) can  be  obtained is given  in  Appendix A as 
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Equation (A-16). Also specific  equations  for 2 are  given  in  Section 4 for two- 
elastic-element,  symmetrical  three-elastic-element,  unsymmetrical  three- 

elastic element,  and N identical-elastic-laminate  structures.  

Natural  Frequency  Expression of DiTaranto 

DiTaranto [ R e f .  5 1  has  obtained  an  expression  for  the  natural   fre- 
quencies of laminated  beams  (two-elastic-element  structures  comprised  of 

solid  structural   sheets)which he claims to  be exact for  simply  supported  beams 
and  postulates  that it is a good  approximation  for  other  end  conditions. The 
expression  for  natural  frequencies is g iven   as  

2 Bl + + 6"0! 
P W12 = x, ( R e f .  5,  Eq. 111-4) 

where 

Rl [x,+ RlS( l+  P2)1 
xo;z+2x,sRl+s2R12(1+/32) 

and it is assumed  that* 

a n x, = L "  

( R e f .  5 ,  Eq. 111-5) 

which is the  square of the  wave  number P Changing from DiTaranto's 

notation to our  notation 

p =  - W 

g 

R = -  bG' 
Kl Hv 

s =  Kl+G 
Kz 

A3= P2 

(3 4) 

(3 5) 

* For s i m p l y  supported  beams  this  relation  was  found to be  exact. 
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where (E& is.the  uncoupled  flexural  rigidity,  d is the  dis tance  between  the 
centers  of the two elastic laminates,   w is the  weight  per  unit  length of the  beam, 
g is the  acceleration of gravity,  b is the  width of the  viscoelast ic   layer ,  G’ 
is the  real  part of the viscoelastic shear  modulus, is the  thickness of the 

viscoelast ic   layer ,   and & and K~ are  the  extensional  st iffnesses (K = EiAi 
whel-e Et is the- elastic modulus  and Ai is the cross sect ional   area of the  

it’ element) uf the  top  and  bottom elastic elements,  respectively. 

Hv 
i 

Noting  that 

Y 

If0 

Equations 111-4 and 111-5 of Reference 5 can  be  rewritten as 

6 = f o d r n Y  

where 

sa = xc1+ X ( l +  8”>1 1 +  2 X + X 2 ( 1 + B d )  E! 

(39) 

which is recognized as the  coupling  parameter €or two-elastic-element 

structures.  Making  this  substitution  in  Equation (39) results  in  Equation (32). 
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Theoretical  Results of Snowdon 

Snowdon [Ref. 63 has  s tudied  the  response of internally  damped 
beams by replacing  Young's  Modulus by a complex  Young's  Modulus  in  the 

equations of motion  for  elastic  beams. The theoretical   analysis of composite 

elastic and  viscoelast ic   s t ructures   assumes  that   the   composi te   s t ructure  acts 
essent ia l ly  as a solid  structure  having a complex flexural  rigidity  obtained 

from a n  analysis of the  composite  structure.  Under  this  assumption,  the 

resul ts  of Snowdon are   appl icable   to   the  composi te   s t ructures   under   s tudy.  
Snowdon has  shown  that  for  beams  with  the same real  part  of the  complex 
flexural  rigidity  but  with  loss  factors of 0 . 0 1  and 0 . 1 ,  the  resonant  fre- 

quencies   are   pract ical ly   the same. A loss   fac tor  of 0 . 0 1  is representative of 

the  internal  damping  possessed by a metal beam. A loss   factor  of 0 . 1  is 
representative of viscoelastic  shear-damped  composite  structures.  Snowdon also 
obtained  results  for a loss   factor  of 1 . 0  and  the  resonant  frequencies  were,  in 

general,  not  the same a s  for  the  lower loss factors,   especially  in  the  higher 

modes.  However,  this  value of loss   factor  is cons idered   to   be   ou ts ide   the  
range of practical   interest .   These  results  support   the  assumption  that   the 
resonant  frequencies of viscoelastic  shear-damped  structures  can  be  obtained 

from tne undamped  frequency  equations by replacing  the  flexural  rigidity by 

the  real  part of the  complex  flexural  rigidity. 

Lumped Parameter  Model  Studies 

A s  part of the  resonant  frequency  analyses,  single-degree-of-freedom 
lumped  parameter systems were  studied  since  exact  theoretical   results  are 

known  for t hese  s y s t e m s .  The single-degree-of-freedom sys t em is represented 
by a lumped mass m and a complex  s t i f fness  K* as shown by the  sketch on  

the  following  page.  Vibration  excitation of the  system is the  harmonic  motion a 
of the  foundation  and  the  response is the  harmonic  motion x of  the mass. 
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. , 

The equation of motion is 

m x  = - K* (x-a) .. 

. ,.I 

For the  excitation a = a, eiwt8 the  response is x = e i(wt-rp)t8 so that 

Writing K* a s  a complex  quantity 

K* =Re (K*) (1 + i€) (43) 

and  defining a reference  frequency aR in  terms of the  real   part  of the complex 
stiffness K* , as follows 

Equation (42) becomes 
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and therefore 

-E (" )2 

-1 O R  

cp = t a n  [ 1 - (LL,...2] W R  
(4 7) 

T o  solve for the  resonant  frequency,  take  the  derivative of x" a0 with   respec t   to  

o and set the  resul t  to zero.  Defining 

d% - 
dw 

and 

dE E = -  dw (4 9) 

The  resonant  frequency  equation  can  be  written as 

2(1+ E 2 )  n+ EWRE oR [(l +E2)  0 + E w R E l  - 03+02+ 2 
2(1+€'2) WR 1 + E 2  W -  OR = 0 (50) 

In  general   the  quantit ies o 0 ,  E ,  and E a r e  all functions of frequ-ency w 

so thar  the  solution of Equation (50) can  be  quite  difficult .  It is interesting 

to note,  however,  that i f  E is not a function of frequency (i. e. , E = 0) , then 

R' 

w = OR satisfies the  resonant  frequency  equation.  In  other  words,  i f  the  

ratio of the  imaginary  part to the  real   part  of the  complex  st iffness is constant  

with  respect  to frequency,  then  the  resonant  frequency  can  be  obtained from 

the  undamped  frequency  equation  by  replacing  the  stiffness  by  the real part of 

the  complex  st iffness . 
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The case of relaxation  type  damping (elastically coupled  viscous 
damping) was  studied  in some detail  since  this  lumped  parameter  model  has 
certain similarities with  viscoelastic  shear-damped  beams [Ref.  71. A sketch 
of this  s y s t e m  is shown  below  where N is a dimensionless  st iffness  ratio 
(which is comparable to the  geometrica1,parameter Y for viscoelastic shear- 
damped  structural  composites). 

n 

The  undamped  natural  frequency 00 is defined as 

wo2= k/m 

and the fraction of critical  damping 5 is 

For this  s y s t e m ,  u s e  of Equation (44) gives 

1 + ( N + l ) ( - $  2 2 0 2  

a;= a o 2  

and 

(53) 
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For th i s   sys tem,  E is a function of frequency so tha t  it cannot  be expected 
tha t  wR wi l l   be   the  exact resonant  frequency.  However, it c a n  be s e e n   t h a t  as 
c approaches  zero, OR approaches 00 and,  as c approaches  infinity,  

approaches d x  wo, which  are  the  correct values for the  resonant  frequency 
for  this s y s t e m  [Ref.  8 3. Also,  for on'e intermediate  value of E ,  the   s lope  of 
€ is equal   to   zero (i. e. , E = 0) so that ,  at this  value of c ,  w is the  correct 
value for the  resonant  frequency.  Therefore OR approaches  the  correct  asymp- 
totes as r approaches  zero  or  infinity,  and  has  one  correct  value  between  the 
asymptotes. The exact resonant  frequency is calculated by substi tuting  the 

expression  for o given by Equation (53) into  Equation (50) and  solving  for 

O R  

R 

R 
- . The approximate  resonant  frequency is calculated by set t ing W =  0 in  

W O  W R  R 
Equation (53) and  solving  for . 

The above  discussion of resonant  frequency  was  applicable  to  absolute 

transmissibil i ty TA (i. e. , the  excitation is the  motion of the  foundation  and  the 

response is the  motion of the mass). However,   other  resonant  responses  can  be 

defined. Some of these  are: 1) relative  transmissibil i ty T (i.e. , the  excita- 
tion is the  motion of the  foundation  and  the  response is the  relative  motion 
between  the mass and  the  foundation); 2) acceleration  amplification  factor H 
(i.e. , the  excitation is a force  on  the mass and  the  response is the  acceleration 

of the mass); 3) driving  point  mobility M (i. e. , the  excitation is a force on the 
mass and  the  response is the  velocity of the mass). Another  frequency of 

interest  is the  damped  free  vibration  natural  frequency ad. Of all the  above 

resonant or natural  frequencies , only  the  ones  for  relative  transmissibility  and 
acceleration  amplification  factor  are.  the same. 

R 

a 

Another  approximate  resonant  or  natural  frequency  can  be  defined as the 

square  root of the  ratio of the  modulus of the  complex  st iffness K* to   the mass m ,  
as follows 

a2 = Re(K*) J 1 + E2 
M m (55) 

A l l  of the  above  defined  resonant  frequencies , as wel l  as the  damped 
natural  frequency  and  the  two  approximate  frequencies , are  shown  graphically  in 
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Figure 8 as  a resonant or natural frequency ratio  versus  the fraction of 
critical damping for a value of N = 3 .  The frequency  ratio is the 
ratio of the  resonant or damped natural frequency to  the undamped natural fre- 
quency wo . The resonant  frequencies for absolute  transmissibility and driving 
point mobility  and the damped natural frequency are fairly close. For these 
frequencies,  the approximation using Re(K*) is better for low values of c , 
whereas  the approximation using the modulus of K*(i. e. , Re(K*)d? ) , is 
better for high values of p . The approximation using the modulus of  K* is 
better  at  all  values of c for the resonant  frequencies of relative  transmissibility 
and acceleration amplification  factor. A case could be made  for using the 
modulus approximation. However, these  results  represent  rather  large  values 
of E: , which is comparable  to  the loss factor of damped beams. For low values 
of E, there is very little  difference between the modulus approximation and the 
Re(K*) approximation. Another consideration is that  the Re(K*) approximation 
is much easier  to  calculate. 

a0 w 
0 

The conclusions  that  are drawn from the lumped parameter model studies 
are:  1) using the Re(K*) in  the undamped natural frequency equation did not 
give the exact  answer for  any of the  resonant  frequencies or for the damped 
natural frequency: 2) the frequency calculated by using the Re(K*) will  give a 
fairly good approximation to  the  resonant  frequencies and the damped natural 
frequency,  especially when the damping is small; 3) the  various  resonant  fre- 
quencies and the damped natural frequency are i n  general not the same and 
determination of the  exact  frequencies  requires a separate  analysis for each of 
these  frequencies. 

Summary  of the Resonant Frequency Analyses 

The relation for calculating  resonant  frequencies of viscoelastic  shear- 
damped structural  composites,  as given by Equation ( 3 2 ) ,  was  derived  based 
on the  assumption that  there is an effective  flexural  rigidity of these  structural 
composites  equal  to the real part of the complex flexural  rigidity. A s  was  the 
case when considering  structural loss  factors, this assumption is again 
supported by  the  theoretical work  of DiTaranto [Ref. 51, and also by the 
theoretical  results of Snowdon  [Ref. S i .  Lumped parameter model studies 
have also  indicated  that  there is some justification for this postulate and 
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subsequent experimental results have shown good agreement with theoretical 
results  based on this  postulate  (see Section 5). 
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SECTION 4: DESIGN PROCEDURES 

This  section of the  report  presents  design  procedures  and  design  graphs 
pertaining to the  structure loss factors  and  resonant  frequencies of the  four 
types of structural  composites  illustrated  in  Figure 3 .  In 911 of these  i l lustra-  
t ions,   the  elastic and viscoelastic elements  are  shown as laminates:  however, 
this  restriction is applicable  only to the N identical-elastic-laminate  struc- 
ture  shown  in  Figure 3 (d) . 

Six cross-sect ions of two-elastic-element  structures are shown in 
Figure 4.  The angle  design  shown  in  Figure  4(f)  can  be  considered as a two- 
elast ic-element   s t ructure   s ince  the  two  plates   wil l  act as one  element [ R e f .  11. 
Typical cross-sect ions of symmetrical  three-elastic-element  structural  com- 
posite  designs  are  shown  in  Figures 5 and 6 .  In  some cases, there  are  actually 
more  than  three elastic elements  employed  in  the  design;  however,  because of 
the  physical   orientation  and  identical   f lexural   bending  properties  of  the  identical  
elastic elements  located  on  either  side  of  the  central   elastic  element,   the  struc- 
tural  composites m a y  be  considered  to  be i n  the  symmetrical  three-elastic- 
element  design  category.  Figure 7 shows six representat ive  cross-sect ions of 
the  unsymmetrical  three-elastic-element t y p e  of structure. 

Numerical  iterative  design  procedures  are  presented  below  for  obtaining 
the  structure  loss  factor for a given  resonant  frequency f r  and  for  obtaining 
the  structure  resonant  frequency f r  for a given  reference  frequency fo . These 
procedures m a y  be  employed  (either  manually or with  digital   computer  facil i t ies) 
to  achieve  virtually  any  desired  degree of accuracy. 

A graphical  design  procedure  (requiring  no  iteration  process) is then 
presented  for  obtaining  structure loss factor as a function of frequency  and  the 
structure  resonant  frequencies.   This  procedure  involves  the  use of a set of 

design  graphs  that   provide  the  structure  loss  factor q and  the  resonant  fre- 
quency  ra t io   k/fr  as a function of the  uncoupled  shear  parameter X, . Since 
this  design  procedure is relatively  simple  to  use,  it provides a rapid  means of 
assess ing   the   su i tab i l i ty  of a proposed composite structural  design  with  regard 
to the  structure  loss  factor.   The  accuracy of this  procedure,  however, is 
limited to that   associated  with  reading  the  design  graphs.  
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Definition of Design Parameters 

Use of Equation (1 5) for structure loss factor .II and Equation (32) for 
resonant frequency ratio fr/& require  the  determination of the  geometrical 
parameter Y and the complex coupling parameter Z*. The geometrical 
parameters for a wide  variety of cross-sections of the four types of structural 
composites  considered  are  given i n  Reference 1. The real and imaginary parts 
of the complex coupling parameter Re(Z*) and  Im(Z*) , respectively,  are 
defined below for each of the four types of structures,  as a function of the 
parameter X ,  the  viscoelastic material loss factor @ and other  parameters 
when necessary. The shear parameter for all of these  structures is given by 

Equation (3  1). The extensional  stiffness K i n  Equation ( 3  IC) is the only 
quantity  whose  definition  will be different  for  the four types of structures and 
is given below,  along with Re(Z*) and  Im(Z*) . 

Two-Elastic-Element Structures 

x(l +x) +x 2 2  p 

(1 +x)2 + P p 2  
Re (Z*) = 

Symmetrical Three-Elastic-Element ." " Structures 

K = K 1  (59) 
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Im(z*) = Xj3 
(1 +x)” +Yp2 

Unsymmetric-a1  Three-Elastic  Element  Structures 

K = K 1  

(61) ” 

where 

K = EBH 

For N odd,  define n = (N-1)/2 



where Re(Qn) and  Im(Q ) are  obtained  by  solving  the 2n simultaneous 

equations  with i = 1 8 2, . . . 8 n. 
n 

E jRe(Qj)+(i+X)Re(Qi)+i 2 Re(Qj)-XpIm(Qi) = iX 
j =.I j=id 

CjIm(Qj)+(i+X)Im(Qi)+if:Im(Qj)+Xfl Re.(Qi) = iX6 
I-I 

j= l  j=ltl 

For N even,   def ine n = N/2 

where Re(Qn) and  Im(Qn) are obtained  by  solving  the 2n simultaneous 

equations  with i = 1, 2 . . . , n. 

~ ( j - l / 2 ) R e ( Q j ~ ~ - 1 / 2 + ~ ) R e ( Q i ) + ( i - l / 2 ) ~  j - l  j=itl Re(Qj)-XPIm(Qi)=(i-1/2)X 

~(j-l /2)Im(Qj)+(i-1/2+X)Im(Qi)+(i-1/2)f:  j = i  j=l+l Im(Qj)+Xfl  Re(Qi)=(i-1/2)Xp 
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Resonant  Frequencies  and Loss Factors  for a Given 
Beam and Viscoelastic Material '  

The  following  iterative  design  procedure can be  employed to ca lcu la te  
the  structural   resonances  and  the  structure  loss factor at these  resonances  for  
a given  beam  configuration.  For  the  particular  beam  cross-section,  calculate 
the  geometrical  parameter Y and,  using  Equation  (31c)  with  the  proper 
definition of extensional  st iffness K for  the  four types of s t ructures ,   calculate  
the  shear  parameter  coefficient C. For a given  length of beam  and  end 
conditions,   calculate  the  various  modes of interest  of the  reference  frequency 43 
using (EI)o as the  flexural  rigidity  in  the  undamped  natural  frequency  equation. 
For each  reference  frequency f,, the  following  iteration  procedure is required 
to  calculate  the  corresponding  structure  resonant  frequency fr. Initially set 
Z = 0 and  hence f r  = fo . With  this   value of f r ,  obtain G' and  for  the 
viscoelast ic   mater ia l   used.   With  these  values  of Z,  f ,  and G '  , ca lcu la te  X 
from Equation  (31).  With  these  values of B and X ca lcu la te  Z from the 

appropriate  equation  for  the  type of structure  being  considered.  Substitute  this 
value of Z into  Equation  (32) to obtain  an  improved  value of fr .  This  procedure 
is then  repeated  using  the  improved  value of f r  so obtained. Four or five 

iterations  are  required  using  the  criteria  that  the last two values  of fr calcu- 
lated  differ by less than 1/10 of one  percent. To obtain  the  loss   factor  at th i s  
frequency, u s e  the last values  calculated  for B and X and  calculate  Im(Z*) 

from the  appropriate  equation  for  the t y p e  of structure  being  considered.  Using 
this  value of Im(Z*) and  using  the last value of Z calculated  above  for 
Re(Z*) , calculate   the  s t ructure   loss   factor  77 from Equation (1 5) .  For digital  
computer  computations,  the  values of G' and B as a function of frequency 
have  to  be  entered  into  the  computer  in  ei ther  tabular  or  equation form. 

Development of Design  Graphs 

For the  four types of structural   composites  considered,  relationships 
have  been  found  expressing  the  coupling  parameter Z = RE(Z*) as a function 
of the  shear  parameter X = Re(X*) , as given by Equations (57), (60), (63), and 
(66).  These  relationships,   which  will   always  contain  the  parameter B and may 
contain  other  parameters  depending  on  the  particular type  of structural   composite,  
can  be  expressed  in   general  as 
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z = z(x) 

An iteration procedure is now used to  determine Z and X. First, 
assume some value of X,. To begin this  iteration  let X = X. . Insert  this 
value of X into  the  particular form  of Equation (69) that is applicable for the 
type of structure being considered and obtain a value of Z. This value of Z 

is used with Equation (31a)  to  obtain an improved value of X. Repeat the 
procedure to any desired  degree of accuracy. In this  iteration  process , it is 
not necessary to give  particular  values  to G I ,  f ;  or any of the  values used to 
calculate C i n  Equation (31c).  It is necessary only to  give  values to &, Y, 
8 ,  and any other  parameters necessary i n  the  particular form of Equation (69) 

being used, 

The imaginary part of the complex coupling parameter Im(Z*) is a 
function of the same parameters as  is Z so that,  after Z and X are  deter- 
mined, Im(Z*) can be calculated. With the  real and imaginary parts  of  Z* 
and a value of the  geometrical parameter Y ,  the  structure  loss  factor is 
calculated by using Equation (1 5) and the frequency ratio &/fr  is calculated 
using Equation (32) .  The above calculations  are  repeated for other values of 
X, and design  graphs can be constructed providing q and fo/fr as a function 
of X, (defined by Equation  (31b) for a particular type of structure) and given 

values  of 16, Y, and any other parameters necessary in the  particular form of 
Equation (69) . 

For some particular cases,  6 and Y are the only parameters necessary. 
In these  cases a series of graphs can be drawn, each with a different  value 
of Y. On each of these graphs there  can  be a series of curves,  each with a 

different value of /3. Alternatively  the  graphs can be drawn, each with a 
different  value of B,  having a series of curves,  each with a different  value 
of Y. Such a group of design graphs represents a complete  graphical  descrip- 
tion of the structural  loss  factor and resonant frequency ratio for the particular 
type of structural  composite  considered. For the  particular type of structural 
composite  that  the design graphs apply to, the parameters C and Y are 
calculated  and, for a particular frequency of interest, @ and GI are obtained 
from data for the particular  viscoelastic shear-damping material being used. 
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In  the  definition  for C given by Equat ion  (31~1,  K is the  only 
quantity  whose  basic  definit ion  will   be  different  for  different  types of struc- 
tural  composites.  The  definition of K for  the  four  types of s t ructures   are  
given  by  Equations (56) , (59) , (62) , and  (6 5) . 

I 

Two-Elastic-Element  and  Symmetrical  Three-Elastic-Element  Structures. 
For  two-elastic-element  and  symmetrical  three-elastic  element  structures, 
the  only  parameters  required to prepare  the  design  graphs of q and f,/f, 
versus  X, are  the  geometrical  parameter Y and  loss   factor  8 .  A set of 
design  graphs  developed  for  these  two  types of structural  composites  are 
presented i n  Figures 9 through 1 9 ,  where 8 varies  on  eakh  graph  for a given 
value of Y. For the  design  graphs  presented  in  Figures 20 through  37, Y 
varies  on  each  graph  for a given  value of 8 .  The values  of 7 plotted  were 
generally  between 0 . 0 1  and 1 .0 .  Values of below 0 . 0  1 would  indicate 
a poor  structural  composite  design  since  this is comparable  to a resonance 
amplification  factor of 1 0 0 .  Values of above 1 . 0  represent  poor  designs 
from the static stiffness  and  weight  points of view [ R e f .  11, 

A l l  of the r) versus X. curves .have  a slope  (on  log  paper) of "1 for 
low  values of X. and -1 for  high  values of X. . The sharpness  of the  peaks 
increases   and  the  value of X, a t   the  p e a k s  d e c r e a s e s   a s  f i  and/or Y 
increases .   I t  is interesting  to  note  that  for  high  values of X, (low  values of 
frequency),  the p = 1 curve  in  Figures 9 through 19  and  the Y = 2 curve i n  
Figures 20  through 37  represent  the maximum obtainable  structure  loss  factors.  
These  general   characterist ics  are  i l lustrated  in  Figure 38. Referring to  
Figures 9 through 1 9 ,  for a given  value of X, and Y, there is a finite  value 
of fi  between 1 and O3 that   wi l l   g ive  the maximum value of the  structure loss 
factor q. Referring to Figures 20 through  37,  for a given  value of X, and 8 ,  
there is a finite value of Y between 2 and  that  will  give  the maximum 
value of the  s t ructure   loss   factor  q. The physical   s ignif icance of an  optimum 
value of Y is somewhat  nebulous  since  the same physical  properties of the 

s t ructure 's   cross-sect ion  are   used  in   calculat ing  both Y and  the  shear 
parameter  coefficient C ,  to   which X, is proportional.  The  physical 
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significance of an  optimum value of 8 is that ,  as the  viscoelastic  material  

becomes  more  viscous  (higher  value of 8) , the  elastic elements  become  more 

coupled  together  and,  therefore,  there is less shearing  action.  Since  the 
structure loss factor  depends  on  the  viscosity of the  viscoelastic  material  
and  the  amount of shearing, it seems reasonable  that  there  would  be some 
value of B that  would  give  the  optimum  combination of viscosity  and  the 

amount of shearing. 

The frequency  ratio & / f r  approaches a value of unity as the  uncoupled 

shear  parameter X, approaches  zero;  furthermore, f , / f r  approaches a value 

of 1/,/- as X, approaches  infinity.  This  dependence  can  be  seen from 
Equation  (32)  and  the  fact  that, as X, approaches zero., the  coupling  param- 

e te r  Z approaches  zero,  and as X. approaches  infinity Z approaches  unity. 
The relationship  between  the  uncoupled  shear  parameter X, and  the  shear 
parameter X can   be   s een  by  considering  Equations  (31a)  and (32), so that 
X, /X is equal to the  frequency  ratio f,/fr. 

In  Figures 9 through  37,  for  any  curve (i. e. , for  any  given  values of 

,6 and Y )  , there is one  peak  value of structure loss factor.  This is defined 
a s   t he  max imum structure loss factor  qmax  and is presented  graphically as a 
function of the  geometrical  parameter Y for  various  values of the  viscoelast ic  
material loss factor @ in  Figure 39 [Ref .  11. Also, the value of the  uncoupled 

shear  parameter X, at which q = qma, which is defined as the optimum 

uncoupled  shear  parameter & , l o p ,  is presented  graphically  as a function of 
the  geometrical  parameter Y for  various  values of @ in  Figure 40. 

Approximation  for  Unsymmetrical  Three-Elastic-Element  Structures. - 
Using  the  appropriate  definitions  for  the  geometrical  parameter Y and  the 
uncoupled  shear  parameter X,, the loss factor  design  curves  presented  in 

Figures 9 through  37  apply  for  the  two-elastic-element  and  the  symmetrical 

three-elastic-element type  structures.  They c a n  also be   used  as an  approxi- 
mation  for  the  unsymmetrical  three-elastic-element t y p e  structural  composite 
by using  the  method  developed  in  Appendix D. This  method  indicates  that  the 

&, scale should  be  multiplied by some number  depending  on  the  parameters 

d l  /da  and K 1  / K 2  = E 1  A1 /Ea A2 (see Figure 3c  for  the  definitions of d l ,  
d a ,  El, E a ,  A1 and A2). However, it is probably  easier to determine a 
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corrective multiplier  for &, rather  than  actually  changing  the X. scale. The 
corrective  multiplier is just   the   reciprocal  of the scale multiplier. The 
corrective  multiplier  has  been  plotted  versus  the  parameter K1 /Ka for  various 
values  of d l  /da in  Figure  41. Loss factors  and  resonant  frequencies  for the 
unsymmetrical  three-elastic-element  structural  composite  can  be  obtained by 
multiplying X, by  the  value  obtained from Figure  41  before  entering  the  curves 
presented i n  Figures 9 through  37. 

Shear  Parameter  Coefficient for Two- and  Three-Elastic-Laminate Plates. - 
The  design  graphs of structure loss factor 77 versus  the  uncoupled  shear 
parameter  presented  in  Figures 9 through 37 can  be  used to predict   the 

variation of structure loss factor with  frequency. For any  given  frequency f ,  
the  uncoupled  shear  parameter  can  be  calculated by using  Equations  (31b)  and 
(31c). To facilitate this  calculation,  the  shear  parameter  coefficient C t i m e s  
the  thickness  of the viscoelastic layer(s) Hv has  been  calculated  and  plotted 
for some common cross-sect ions.  The cross-sect ions  are  of two-elastic- 
element  and  three-elastic  element composite structural plates comprised of 

various  combinations of fibre-glas s , magnesium,  aluminum,  titanium  and 
steel shee ts .  The properties of these  f ive  materials  used  in  the  calculations 
are  l isted  in  the  table  below.  Graphs of the  quantity CHV versus  the  thick- 
ness   ra t io  HI /Ha [see Figures  4(a),  S(a), and 7(a)] are  presented  in  Figures 



42 and 43. Figure 42 is for  two-elastic-element  composite  structural  plates, 
and  Figure 43 is for three-elastic-element  composite  structural plates (either 
symmetrical  or  unsymmetrical). For these  par t icular   s t ructural   composi tes ,  

the  graphs of CHv  versus  HI /Ha can   be   used  as a design  guide  for  determin- 
ing  the  value of the  thickness  of the  viscoelast ic   layer  Hv and  the  thickness 

ratio HI /H2 . 
Comparison of the  Symmetrical  and  Unsymmetrical  Three-Elastic- 

Element  Structures. - From the  analysis  in  Appendix C, it is seen  that   chang-  

ing a three-elastic-element  structure from a symmetrical  arrangement  to  an 
unsymmetrical  arrangement  essentially  shifts  the q versus X, curve to  the 

right  for  most  practical  structures . Since X, is proportional  to G ‘/f , which 

decreases  with  increasing  frequency  for  most  viscoelastic  materials LRef.  2, 

p. 731, a plot of 77 versus  frequency  will  be  shifted  to  the  left (see Figure 44) .  

Neglecting  the effects of the  geometrical  parameter,  the  unsymmetrical  arrange- 
ment  will  have  higher  loss  factors i n  the  low  frequency  region  which is usually 
the  more  important  since  the  frequency  where rl = qmax is usually  quite  high. 

For the   spec ia l   case   where   the  elastic elements  are  structural   sheets 

and E1/E2 2 1, the  geometrical  parameter for the  unsymmetrical  arrangement 
is greater  than or equal  to  the  geometrical  parameter  for  the  symmetrical  arrange- 

ment [Ref. 1, p.  852. Therefore,  for  this case the  unsymmetrical  arrangement 
is better  for  the  low  frequency  range. This comparison is based  on  the  two 

structures  having  the same weight,   static  st iffness  and  shear  parameter 

coefficient C since  the  only  difference  assumed  was  in  changing  the  arrange- 

ment  of the  elements.  

For the  most  common  case of structural  composites  composed of a 
lamination of s t ructural   sheets ,  a comparison of the  symmetrical  and  unsym- 

metrical  three-elastic-element  type  structures  has  been  made.  This is shown 
graphically  in  Figures 4 5  and 4 6 .  I t  is assumed  that   the  thickness of the 

viscoelast ic   layers  Hv is small compared to HI + Ha so tha t  its value is 

taken as zero  in  the  calculation of the   d i s tance  d for  the  symmetrical   case,  
and of the   d i s tances   d l   and  d2 for  the  unsymmetrical case. The only  other 
parameters  necessary  for  these  calculations  are  the  ratios HI /Hz and E 1  /E2 , 
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N Identical-Elastic.-Laminates. - For the case of N identical  elastic 
laminates,   the  analytical   solution is considerably  more  complicated  than  for 
the two and  three-elastic  element cases. As was  shown  in  Appendix A,  the  
solution for a general N elastic element  structure  requires  the  solution of 
N - 1 complex  simultaneous  equations or '2(N-1) real  simultaneous  equations. 
The reason  for  this is that  there is one  complex  equation  for  each  viscoelastic 
layer. For N identical  elastic laminates  the  solution is somewhat  simplified. 
There  are two reasons for this: (1) Since all the  elements  are  identical ,   the 
extensional  st iffness  terms Ki can  be  taken  outs ide of the  summations, 
thereby  simplifying  the  equations;  and (2)  due  to  symmetry,  the  number of 
complex  equations  reduces to (N-1)/2 when  the  composite  neutral axis passes  
through  an elastic element (i.e. , N is odd)  or N/2 when  the  composite  neutral 
axis passes  through a viscoelastic  element (i. e. , N is even).  The  equations 
to be  solved  are  Equations  (68a)  when N is odd  and  Equations  (68b)  when N 

is even. The  only  parameters  necessary to solve  these  equat ions  are  X. , Y ,  

8 ,  and N.  

The  geometrical  parameter Y = ($ -1)(1 + 2V)', where V = H/2H, Hv 
is the  thickness of the  viscoelastic  damping layers, and H is the  thickness of 
the elastic laminates,  Therefore,  for  given  values of N , V ,  and (3, a design 
graph of the  structure loss factor q versus  the  uncoupled  shear  parameter X, 
can  be  obtained.  This was accomplished  for  the  five  values of N equal to 
2 ,  3 ,  4 ,  6 ,  and  8. For each  value of N ,  four  values of the  viscoelastic  layer 
thickness  parameter V were  selected  equal  to 0 ,  0 . 0 5 ,  0 . 1 ,  and 0 . 1 5 ,  and 
values of the  viscoelast ic  material loss factor B ranging  between 0 . 0 5  and 
5 were  selected.  The results  are  displayed  graphically  in  Figures 47  to 56. 

The shape of these  curves  is quite  similar to those  for  the two- and 
three-elastic-element  structures.  Here  again, for high  values of & (low  values 
of frequency),  the = 1 curve  represents  the  highest   obtainable  structure loss 
factors. Of course,  for N = 2 and N = 3 ,  these   resu l t s   a re   jus t   spec ia l  cases 
of the two- and  three-elastic-element  structures,  respectively. 

For the  purpose of illustrating  the effect of increasing  the  number of 

laminates,   the maximum structure loss factor qmax and  the  optimum  uncoupled 
shear  parameter (X, )op have  been  plotted  versus  the  viscoelastic  material  
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loss factor for values  of N equal to 2, 3 ,  4 ,  5,  6 and 8 in  Figures 57 
and 58. For these  curves ,  it was  assumed  that  Hv << H, s o  that  V = 0. 
A t  f irst   there is a large  increase  in  Qmax as N is increased,   but   the  rate of 
increase in 7 ) .  decreases  for further  increase  in N. This is necessarily SO 
since,  a s  N approaches  infinity, approaches p .  

m a x  
q m a x  

Due to the fact that all elastic elements are assumed to be  identical  

structural   sheets,   the  uncoupled  shear  parameter X, for  this case takes  a 
particularly  simple  form. From Equation  (3 IC) 

c =  0.903 
H V m  

where Hv is the  thickness of the  viscoelastic  damping  layer  ( in),  E is the 

modulus of elasticity  (lbs/in2)  and Y is the  weight  density  (lbs/in3) of the 

elastic elements. From Equation  (3 1 b) 

& =  0.903 (5) 
H v d E  

where G '  is the  real  part of the  complex  shear  modulus  (lbs/in2) of the 
viscoelastic  material ,   and f is the  resonant  frequency  (Hz). 

Design  Example 

A s  an  example of the   use  of the  design  graphs  for  predicting  resonant 
frequencies  and  associated loss factors, one of the  beams from the  experimen- 
tal tests (see Figure 67) was  chosen.  This is a two-elastic  element  beam 

comprised of aluminum  plates.  The  pertinent  cross-section  dimensions of the 

beams  are:  thickness of the  top  aluminum  laminate  HI = 0.0309  inches; 
thickness of the  bottom  aluminum  laminate Ha = 0.0899  inches;  and  thickness 
of the  viscoelast ic   layer  H = 0,0048 inches.  The viscoelastic material is 3M 

No. 466  adhesive  transfer  tape. 
V 

The thickness  ratio H1 /Ha = 0.344 s o  that,  using  Figure 2 . 1 1  (B) Of 

NASA CR-742 [ R e f .  11, the  uncorrected  geometrical  parameter Yo is 1.33. 

The  viscoelastic  thickness  parameter V = Hv/(H1 + Ha ) = 0.0397 s o  that ,  
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using  the  graph  on  page  15 of NASA CR-742, the  geometrical  parameter  ratio is 
1.165  and,  therefore,  the  geometrical parameter Y = 1.55. To calculate   the 
shear  parameter  coefficient C,  u s e  of Figure 4 2  with HI /Ha = 0.344 gives 
CHv = 3.1 x and,  therefore, C = 0.646. TJsing Figure 63 ,  values  of the 
uncoupled  shear  parameter X, = C(G'/f) were  obtained  ,for  frequencies  in  the 
range of 1 0  to 1000 Hz and  an  assumed  temperature of 750 F. With  these  values  
and  using  Figure 1 4 ,  values  of the  structure loss factor q and  the  frequency 
ratio f, /fr are  obtained. (The value of 1.55  for  the  geometrical  parameter is 
considered close enough to 1.5 s o  that  interpolation  between  graphs  with 
different  values of Y was  not   necessary) .  For every  frequency f = fr ,   the 
frequency  ratio fo/fr is multiplied by f r  to obtain f, . These  results  are 
tabulated  below, from which  the  graphs of fr  versus f, and 71 versus  fr 
shown  in  Figure 59 were  obtained. 

f 
- 
1 0  

1 5  

20 

30 
40  

50 
70 

100  

150  
200 

300 

400 

500 

700 

1000 

- G' 
f 

4 .65  
3 .90  

3 . 4 0  

2.80 
2 . 4 5  
2 .23  

1 . 9 0  

1 . 6 2  
1 . 3 3  
1 . 1 7  

0 . 9 7  
0 . 8 5  
0 .77  

0 .66  

0 .56  

- 
3 .00  
2 .52  

2 .20  

1 . 8 1  
1 . 5 8  
1 . 4 4  

1 . 2 3  

1 . 0 5  
0 .859  

0 .756  

0 .627  

0 .549  
0 . 4 9 7  

0 .426  

0 .362  

B 
- 

1.40  
1 . 4 0  

1 .40  

1 .40  
1 . 4 1  
1 . 4 1  

1 . 4 1  

1 . 4 2  
1 . 4 2  

1 . 4 2  

1 . 4 3  
1 . 4 3  
1 . 4 3  

1 . 4 3  

1 . 4 3  

71 - 
0.055 
0 .065  
0 .074  

0 .088  
0 .10  
0 . 1 1  

0 . 1 2 5  

0 . 1 3 5  
0 .16  

0 . 1 7  

0 . 1 9  

0 . 2 0 5  
0 . 2 1  

0.225 

0.235 

f, /fr 

0.648 
0.652 

0 .655  

0 .658  
0 .664  
0 .67  

0 . 6 7 5  
0 .683  
0 . 6 9 2  
0 .70  

0 . 7 1 5  

0 . 7 3  
0 . 7 4  

0.763 
0.78 

fo 

6 .48  
9 . 7 8  

- 

1 3 . 1  

19 .7  
26 .6  
3 3 . 5  

47 .2  

68.3 
104 
140  

215 

29 2 
370 

534 

780 
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Up to this   point ,   the   length,   width,   or   end  condi t ions of the beam have 
not  influenced  the  design  process.   For  the  particular beam under  consideration, 
the  length = 3 6  inches  and  the  width b = 3 inches .  The beam  was  used as 
a free-free  beam  in  the  experimental test. In   this  test the  resonant  fre- 

quencies   and  the  corresponding  loss  factors were  measured  for  seven  modes. 
To determine  these  quantit ies from Figure 59, it is f i rs t   necessary to ca lcu la te  
the  reference  frequency fo for  these  seven  modes of this  free-free  beam. The 

equation  for  reference  frequency is 

where am is a number  associated  with mode m. The table below  gives am 
for the  first  ten  modes of a free-free  beam. 

m 1 2 3 4 5 6 7 8 9 1 0  

CY 22.2   61 .6   121  200  299  417  555  713  891  1088 m 

The weight  per  unit  length  for  this  beam  was  measured  and is w = 0.0355 

pounds  per  inch. The uncoupled  flexural  rigidity  was  calculated  to  be 
= 1895 lb-in . The reference  frequencies fo for  the  first  ten  modes  were 2 

calculated from the  above  equation  and  with  these  values,   the  corresponding 

resonant  frequencies  fr  and  structure loss factor q were  obtained from 

Figure 59. The results  are  tabulated  below. 

Mode 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

fo 

12.4 

34.3 

67.5 

111 

167 

232 

3 09 

397 

49 7 

607 

- -L f 

19 

51 
100 

1 6 0  

235 

320 

4 2 0  

53 0 

660 

7 8 5  

77 

0.073 

0.11 

0.14 

0 .163 

0 .18  

0 . 1 9 5  

0 .207 

0 .217 

0 . 2 2 5  

0 .23  
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The values  of f r  and Q from this  table  are  plotted  in  Figure 60.  Also 
on  this  graph  are  the  values of f r  and Q obtained  experimentally. It can   be  
seen  that  modes five, seven,   and  e i ther   nine or ten  in  the  experimental  data 
are  missing. This is due  to the  particular  location of the  point of excitation 
for  this  experiment. 
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SECTION 5.: EXPERIMENTAL  VERIFICATION OF THE THEORETICAL  CALCULATIONS 

This  section of the  report  presents a comparison of the  theoretical 
predictions  and  experimental  measurements  of  the  structure loss factor  and 
resonant  frequencies of two-elastic-element,  symmetrical  three-elastic- 
element,  unsymmetrical  three-elastic-element  and N identical-elastic- 

laminate viscoelastic shear-damped  structural  composite  beams.  Cross- 
sect ions of the  experimental  structural  specimens,  which  included  laminated 

beams  comprised of sol id   sheets ,   sol id   and  honeycomb  sheets ,   sol id   sheet  

with  channel  section,  and  various  bars  and  tubes,   are  presented  in  Figures 6 1  

and 62 .  Aluminum and  fibre-glass  structural materials were  employed,  and 

the  viscoelastic  damping  materia1  was  3M No.  466  adhesive  transfer  tape.  The 
dynamic elastic properties of the  damping  material are presented  in  Figure  63. 

The  experiments  were  performed at temperatures  ranging  between 70' and 80' F. 

Measurement of Structure Loss Factor 

The decay  rate  method  was  selected .to measure  the loss factor of the 

viscoelastic shear-damped  beam  specimens  since  the  measurements  can  be 

made  with  considerable  speed  and  the  method is generally  accepted by 
researchers  in  the  f ield of structural  damping Ref. 9-1,101 3. Repeated  measure- 
ments of vibration  decay  can  be  made  on a structural  member  under  the same 
conditions  in  rapid  sequence  thereby  providing  an  accurate  measurement of 
damping  through  averaging of data .  If the rate of decay is measured  in terms 
of the  reverberation t i m e  T60,  the  structure loss factor 77 is given  by 

2 . 2  2.27, 
rl=-= - 

f r  T60  T60 
(7 31 

where T60 is the t i m e  required for the  amplitude of free  vibration to b e  

attenuated  by  60  db  (corresponding to a factor of lOOO), fr  is the  resonant 

frequency of the  decaying  vibration  for  the  particular  mode of vibration  being 
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evaluated,  and T~ = l / f r  is the  period of the  vibration at each  particular 
resonance. 

The  experimental s y s t e m  for  measuring  the  loss  factor of the visco- 
elastic shear-damped beam specimens is shown in  Figure 64; the  instrumentation 
for  the  experimental s y s t e m  is ident i f ied  in   the  char t   presented  below.  

INSTRUMENTATION FOR MEASUREMENT OF STRUCTURE  LOSS  FACTOR 

Instrumentation  Model  Number  Manufacturer 
I 

4 

Electrodynamic  Exciter 

Assembly Driver  Coil) 
Coil  and  Magnet  Acoustic  Research,  Inc.  :(Magnetic  Housing  and 
AR- 1 0 Driver 

Accelerometer B&K 4336 

I II Cathode  Follower 
Amplifier Columbia  Research  Lab. 11 6003 

High-Pass  Filter 330" Krohn-Hite 

Decay Rate Meter 

502 Exact Electronics  Harmonic  Oscillator 

564/2867/3A3 Tektronix Osci l loscope 

Mark I11 Dynaco Power  Amplifier 

507 Spencer-Kennedy  Lab. 

The  structural  specimen is supported  vertically by a string  suspension. A 

small   driver  coil  is cemented  to the  specimen  in a manner  which  will  add a 
minimum amount of st iffness  or  weight  and  allow  centering of the  driver coil 
within  the  magnetic  housing of the  electrodynamic  exciter,   which  provides a 
linear  magnetic  field  for  the  drivei  coil. The electrodynamic exciter, which 
is driven by the  harmonic  oscillator  through a power  amplifier, is capable  of 
delivering 25 wat t s  of power  to a beam  specimen  for  an  extended  period of 
t i m e  at a maximum linear  peak-to-peak  displacement of one-half  inch. 

The response of the  beam  specimen is detected  by  the  accelerometer 
which is mounted  near  the  end of the  beam  with a counter  weight of equal 
magnitude (2 grams)  mounted  on  the  opposite  end of the  beam  for  purpose of balance.  
The high-pass  f i l ter  is used  to reject  all frequencies less than  the  particular 
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resonant frequency at which the loss factor is being measured. The decay 
rate meter provides electronic  switching between two alternating  functions: 
(1) processing  the  signal from the  high-pass filter through a logarithmic 
amplifier, and (2) generating a calibrated logarithmic  decay signal. The 
oscilloscope provides alternate  displays of the  logarithmic  decay signal 
representing the beam vibration and the calibrated logarithmic  decay signal. 

The experimental procedure for the measurement of the structure loss 
factor is as follows. The structural specimen is excited by harmonic vibra- 
tion at  each of its resonant  frequencies so as to attain a steady-state 

vibration  condition. The cutoff frequency of the  high-pass  filter is  set 
approximately at the  resonant  frequency. A s  part of the  electronic switching 
function performed by the  decay  rate  meter,  the  excitation  vibration is abruptly 
removed from the  structure and the ensuing  vibration  decay is sensed by the 

accelerometer. The accelerometer  signal is processed through the  cathode 
follower amplifier,  high-pass  filter and decay  rate meter. The decay  rate 
meter processes  the  signal through a logarithmic  amplifier and generates a 
separate  calibrated logarithmic  decay signal. The structure vibration  decay 
signal and the  calibrated  decay  signal  are  alternately  displayed on the 
oscilloscope on a repetitive  basis thereby allowing  adjustment of the calibrated 
decay  signal to match the  vibration  decay signal. When the  calibrated decay 

signal is adjusted to match the  structure  vibration  decay  signal, the value of 
the  reverberation time T60 is read from the  decay  rate meter and the  structure 
loss factor is  calculated from Equation (73). 

Loss factor measurements are made at  the  various  resonances of  the 
structure  and,  therefore,  data is obtained at  discrete  frequencies. However, 
a curve may be passed through the discrete loss factor  data points  to  generate 
a description of loss factor as a continuous  function of frequency. The 
connotation is that i f  the  structure were to resonate  at an  intermediate 

frequency,  the  continuous  curve of loss factor  versus frequency indicates 
the loss factor which exists for that  particular mode  of vibration. 

The filter in  the  experimental  system places a limitation on the 

m a x i m u m  value of structure  loss  factor which can be measured accurately. 
Because of its "ringing"  characteristic,  the  filter  itself  exhibits a decay 
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rate characterist ic  and,  hence,   the  experimental   system may be  employed 
only to measure  vibration  decay  rates  which are less than  that  of the  f i l ter .  
The active  high-pass filter was   se lec ted   because  of its high  rejection 
rate  (24 db/octave)  below  the  cutoff  frequency  and its favorable  ringing 
characteristic.  Based  on  the fact that  the  effective loss factor of the 
fi l ter   was  generally  greater  than 0 .5  over  the  frequency  range of interest  
(10 Hz to 1000 Hz), data  can  be  obtained  for  structure loss factor  measure- 
ments as high as 0.5. Actually,  even i f  the  range of loss factor  measurement 
was  not  limited by the  filter  ringing  characteristic,  there  would  be  another 
limitation  imposed by the  physical  difficulty  encountered  in  interpreting  the 
decay of a signal  having a few  cycles of oscil lation,  which  would  be  the 
case for  values of loss  factor  greater  than 0 . 5  (see Figure 65) .  It is concluded 
tnat the experimental s y s t e m  is capable of measuring maximum values of 
structure  loss  factor  equal  to 0 . 5 .  

Another  limitation  on  the  measurement of structure loss factor is due 
to the  limitation of the  reverberation t i m e  T60 of the  decay  rate  meter.  This 
limitation is 

so that ,  from Equation (73) 

This  limitation as wel l  as q 5 0 . 5  are  depicted  graphically  in  Figure  66. 
If a theoretically  calculated  value of the loss factor fell within  the  shaded 
area,  then  the  corresponding  experimentally  determined  value  was  rejected 
from the statistical analysis  of the  experimental  data. 

Measurement of Resonant  Frequency 

The resonant  frequencies  are  found by slowly  varying  the  frequency of 
the  harmonic  oscillator  until  the  output from the  accelerometer goes through 
a peak  value.   Since  the  sharpness of the  peak  depends  upon  the  positioning 
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of the  accelerometer  and  the  driver coil, t he  mode of vibration,  and  the loss 
factor,   some  modes  were  easier to determine  than  others  and some modes  did 
not  show  up at all. In  general,  the  higher  modes  were  more  difficult to 
determine  and  are also very closely spaced  when  plotted  on  log  paper.  For 
this reason  any  mode  greater  than  the  fifth  was  rejected from the  statistical 
analysis  of resonant  frequency. 

Presentation of Experimental  Data 

The  experimentally  determined  values of structure loss factors  and 
resonant  frequencies  for 44 different  beam  specimens  are  plotted i n  Figures 

67 through 110. Also the  theoretical   structure loss factor  curve  has  been  drawn 
on  these  graphs.  The  relevant  modulus  and  dimension  data  are  presented  with 

each   graph   as   wel l   as   the   va lue  of the  geometrical  parameter Y and  the  shear  
parameter  coefficient C. There  are  16  two-elastic-element  beams  shown in 

Figures 6 7  through  82.  The  effect of varying  the  thickness of the   v i scoe las t ic  
layer  Hv is i l lustrated i n  Figures 71 ,  72 and 73 where  Hv  is  0.0045  inches, 

0. 0146 inches,   and 0. 025 inches,   respect ively,   and  a l l   o ther   dimensions  are  
the  same  for  the  three  beams.  There  are  21  symmetrical  three-elastic-element 

beams  shown in Figures  83  through  103  and 4 unsymmetrical  three-elastic 
element  beams  shown in Figures 104  through 107.  Only  three N identical- 

elastic  laminate  beams  are  included  and  those  are  shown i n  Figures  108through 
110.  The  value of N for  these  beams  is  2, 3 ,  and 4 respectively.  Four  other 

N identical-elastic-laminate beams  having N = 5 ,  6, 7 and 8 were  tes ted 
but the loss factors  for  these  beams  were  greater  than  0.5  and  therefore,   could 

not  be  measured  accurately  based  on  the  aforementioned  limitations on loss 
factor  measurements. 

Sources of Errors. - The discrepancies  between  the  experimental  and 

theoretical  data  indicated in Figures 67  through 110 indicate  the  degree of 
accuracy  that   can  be  expected  when  predicting  structure loss factors.  While 

there  can  be  many  sources of errors,  it  is felt   that   the  most  significant  are  the 
following: (1) the loss factor  and  the  storage  modulus G '  of the 

viscoelastic  damping  material  are  not  easily  determined  and  vary  considerably 
with  the  frequency of vibration  and  temperature;  (2)  the  thickness of the 
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viscoelastic  layer(s)  Hv i s  difficult  to  measure  and in  many c a s e s   c a u s e s   a n  
error in  the  structure loss factor  proportional to the  error in  measuring  Hv ; 

(3) the  viscoelastic  material   may not have  perfect   contact  at   the  interfaces 
with  the  elastic  elements  and/or  may  have  entrapped  air   bubbles.  Of course ,  
the  experimentally  measured  values  can also be  in  error  and  this  will   add  to 
the  discrepancies  between  theory  and  experiment.  

Statist ical   Analysis of Experimental  Data 

The  experimentally  determined  values of structure loss factor v and e 
resonant  frequency ( f a e  are  plotted  versus  their   theoretically  predicted  values 
7, and (fr)t  ,respectively,in  Figures 111 and 112. The  data  point  symbols  used in  
these  f igures  are  identified  in  the  chart   below. 

~ 

1 -  SYMBOLS USED IN FIGURES 111 and 1 1 2  
" ~- ~ " ~. ~~ 

TYPE OF  STRUCTURAL COMPOSITE SYMBOL 
." . r ~ ~%o-elastic-element ~~~ ~~ ~~ 

* 

[ Symmetrical  three-elastic-element 0 

I Unsymmetrical  three-elastic-element 

X N identical-elastic-laminate 

0 
~~~ 

A l inear  regression of In q on  In q representing a leas t   squares  e t '  
f i t  for 7, on log paper,   was  obtained for 2 2 6  data  points  for  which  the 
equation is 

In qe=o.017575 + 1 .00126  In qt  

or 

71e = 1.0177 qt 1.00126 (7 7) 

This  result  indicates  excellent  agreement  between  experiment  and  theory; 
however,   the  correlation  coefficient  squared (a measure of the  goodness of 
fit) is 0 ..9Z,which is only  fairly  good. 
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Also, a linear  regression of In (f>e on  In (f>t,  representing a least 
squares f i t  for (f>, on  log  paper,   was  obtained for 164 data  points for which 

the  equation is 

In (fJe = 0.1769 + 0.962  ln(fJt  

or 

(fJe = 1 . 1 9  (f$t 0.962 
(79) 

This  result   indicates fair agreement  between  experiment  and  theory;  however, 

the  correlation  coefficient  squared is 0.997,  which is excellent.  

Statist ical   analyses  were  made of the 226 values  of In  qs-ln qt, which 
is the same as In (qe/qt), and of the  164  values of 1n(fJe-  1n(fJt,  which is the 

same as ln[(fJe/(fr)t]. The calculated  means  were  0,0148  and  0.00735, 
respectively.  Since  the  logarithm of the  geometric  mean is the  arithmetic 
mean of the  logarithms of the  values  being  analyzed,  the  geometric  mean of 

qe/qt is 1.01 5 and  the  geometric  mean of (fJe/(fJt  is 0.993.  These  values 

for the  geometric  means  show  excellent  agreement  between  experiment  and 

theory. 
The standardized  probability  densities of In  (qe/qJ  and of 

In [(fJe/(fJ t1 are  shown  compared to the  standardized  normal  distribution  in 

Figures  113and 114,  respectively. It w a s  expected that these  distributions  would 
be  approximately  normal  since it seems that  the  errors are caused by  many 

factors, none of 

hypothesis  that 
this  distribution 

hypothesis  that  

which  represents a predominant  influence [Ref. 1 and 114. The 

In (qe/qJ is normally  distributed is well  justified  (in  comparing 

with  the  normal, X with s i x  degrees of freedom = 5.44). The 

ln[(f>e/(f>t] is normally  distributed is not so well  justified 

2 

(in  comparing  this  distribution  with  the normal, X’ with six degrees of freedom 
= 13.6).  However,  the  following  discussion  will  assume  that  both ln(Qe/qJ 

and h ~ Q ( f > ~ / ( f r ) ~ ]  are  normally  distributed  with a zero  mean  value. 

The standard  deviation of In  (qe/qt) is 0.253 so that  it can  be  expected 

that  68  percent of the  values  of r),/Tt will   be  between 0.78 and  1.29  and 
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95  percent will be  between 0 .6  and 1 .66 .  The standard  deviation of 
In  [(fJe/(f ) 3 is 0.0846 so that  it can  be  expected  that  68 percent of the  values  

of (f> e/(fJ will   be  between  0.92  and  1.09  and  95  percent  will   be  between 
0.844 and  1.18,  Alternatively, it could  be  stated  that   the  percent  errors of qe  

with  respect to qt corresponding  to  plus  and  minus  one  standard  deviation of 
ln(qe/qt)  are + 29 and -22 ,  and  that  the  percent  errors of (f>, wi th   respect  
to  (fr)t corresponding  to  plus  and  minus  one  standard  deviation of 
In c(fJe/(fJtI a re  +9 and -8. 

r t  

Based  on  the  results of the  statistical analyses  of the  experimental 
data  compared to the  theoretical   predictions,  it is concluded  that   the 
theory  and  design  procedures  for  calculating  the loss factor  and  resonant 
frequencies of two-elastic-element,  symmetrical  three-elastic-element, 
unsymmetrical  three-elastic-element,  and N identical-elastic-laminate 
viscoelastic  shear-damped  structural  composites is satisfactory  within 
accepted  engineering  accuracy. 

Transmissibility of Viscoelastic  Shear-Damped Beams 

Transmissibil i ty  tests  were run o n  two of the  beams  that  were  used in 
the loss factor  and  resonant  frequency  analysis (see Figures 67 and 85 for  the 
cross  section  dimensions of these  beams).  The  experimental   setup  was  as 
illustrated in  Figure  115.  The  original  beam  was  clamped  at  its  center,  making 
two  equal  cantilever  beams.  This  was  done  to  avoid  applying  unbalanced 
moments  to  the  shaker  armature. In  both  cases  the beam  length & was  17.5 
inches.  The  input  vibration  was  measured at   the  clamp  and  the  output  was 
measured  at   the  end of the  beam  using a small (2-gram weight)  accelerometer. 
The transmissibility is defined as   the   ra t io  of the  amplitude of the  output  to 
the  amplitude of the  input. 

The theoretical   transmissibil i ty  for a damped  beam is obtained by using 
the  transmissibility  expression  for  an  undamped  beam,  replacing  the  flexural 
rigidity by the  complex  flexural  rigidity,  and  taking  the  square  root of the s u m  
of the  squares of the  real  and  imaginary  parts. The expression  for  the 
undamped  transmissibility is given a s  [Ref .  71  
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where m, = mass of the  beam 
f = frequency of vibration 

4 = beam  length 
E1 = flexural  rigidity 

The complex  flexural  rigidity  for  these  beams is given as  

(EI)* = (EI)o L 1  +Z*Yl = (E& c1 +Re(Z*)Y + i Irn (Z*)Yl (81) 

The uncoupled  flexural  rigidity (EI)o , complex  coupling  parameter Z* and 

geometrical  parameter Y have  been  defined  previously.  In  Equation (.80) 

(EI) is replaced by (EI)* so that  T(4, f) becomes a complex  number, T * ( 4 ,  f ) .  
For any  particular  beam (EI), and Y are  calculated  and,for  every  frequency f 

of in te res t  Re(Z*) and Im(Z*) are calculated as described  previously. 
Substituting  these  values  into  Equation  (80),ReLT*(G, f ) ]  and ImLT*(&, f)] 
are   calculated.  The  damped  transmissibility is 

The experimental  and  theoretical  transmissibility  curves  for  these  two  beams 

are  shown i n  Figures 116  and 117,  respectively.  For  both  beams,  the 
experimental  and  theoretical  curves  agree  quite  well for the  f irst   two  resonant 

modes. A t  higher  frequencies,  however,  the  agreement is not as good. The 

reason  for  this is not  clear,   but it can   be  at least partially  explained by the 
facts that  the test fixture  had  structural  resonances  in  the  frequency  range 

above 200 Hz and  that  the  clamping  device  was  not a perfect  clamp. 

Disregarding  the  results i n  the  higher  frequ.encies,  the  curves i n  
Figures  116  and 1 1 7  demonstrate  that  the  dynamic  response of v i scoe las t ic  
shear-damped  structural  composites  can  be  obtained by replacing  the 

flexural  rigidity i n  the  undamped  dynamic  response  equations by the  complex 
flexural  rigidity  and  calculating  the  damped  dynamic response as   ind ica ted  

above. 
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SECTION 6: THERMAL CONDUCTIVITY  DESIGN  STUDIES 
’., 

The  thermal  conduction  properties of viscoelastic shear-damped 
laminated  plates is an  important  design  consideration  in  space  vehicle  applica- 
t ions  such as so lar   pane ls ,   s ince  a specif ic  minimum value of thermal  conducti- 
vity is generally  required to l i m i t  the  thermal  gradient  across  the  panel.  A 

thermal  conductivity  study  was  conducted to: (1) determine  the  thermal  con- 
ductivity  properties of laminated elastic and  viscoelast ic   plates  as compared 
to sol id  elastic plates;   and (2) invest igate   the  possibi l i t ies  of increasing  the 
thermal  conductivity of laminated elastic and  viscoelastic  plates  without 
seriously  deteriorating  their  damping  properties.  We  shall  consider  the  steady- 
state heat  flow  through a laminated  plate as shown  in  Figure  118. For the 
purpose of th i s   d i scuss ion ,  it will   be  assumed  that   the  temperature TI at 
Surface 1 is a given  constant  and  that   Surface 2 is in  a vacuum  and  radiating  to 
a black  body  at  zero  absolute  temperature.  It is further  assumed  that  the 
laminates  have  perfect  contact at their   interfaces so that no  temperature 
gradient  occurs  across  the  interfaces.  

The  rate of heat  conducted  per  unit   area q can   be   expressed  as [ R e f .  121 

A t  q =- C Hi/k 

where At is the  temperature  gradient  across  the  laminated  plate,  Hi is the 
thickness  of the ith laminate  and ki is the  thermal  conductivity of the ith 

laminate.   In  the  steady-state,   the  heat  conducted  through  the  laminate m u s t  
be  radiated from Surface 2 .  The  equation  for  the  heat  radiated is L R e f .  ln!]  

where E is the  emissivity of Surface 2 ,  0 is the.Steffan-Boltzman  constant 
(0 .173 X BTU/hr-ft2 - O R 4 )  , and Ta is the  absolute  temperature at 
Surface 2.  Writing  At as T1 - T2 and  combining  Equations ( 83)  and  (84) 
gives  
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Given 'TI , f , and C Hi/ki, Equation (85) is solved for Ta . From this 

solution, At is calculated  and,  using  Equation (84) , q is calculated.  For 

small temperature  gradients A t ,  q is approximately  proportional to the 
emissivity 

so that to have  high  values of q ,  € should  be  high.  Using  Equation (86) with 
Equation (83) , it can b e  seen that  the  temperature  gradient across the  laminated 

plate is approximately  proportional to XHi/ki 

so that to have small values of At,  cHi/ki  should  be small. This  implies 

that   the   thicknesses  of the  laminates Hi should  be small and  the  thermal 
conductivities of the  laminates  ki  should  be  high.  Thermal  conductivities of 

viscoelastic  damping materials are  typically  much  lower  than  thermal  conductiv- 
ities of metals. Thermal  conductivities  for many viscoelastic materials  would 

fall within  the  range of 0.02 to 0 . 2  BTU/hr-ft-OF whereas , for most metals , 
the  value  will   be  in  the  range of 5 to 150 BTU/hr-ft-O F. 

A s  an  example of thermal  conductivity  considerations,  assume  that 

the  temperature TI at Surface 1 is 2570 F(125' C) and  that  Surface 2 is 
coated so tha t  its emissivity is 0.9.  I t  is desired to determine  the  tempera- 

ture  drop across the  laminated plate. The laminated plate to be  investigated 
is comprised of two 0.063 inch  (0.00525 ft) thick 3003-H14 aluminum  sheets 

separated by a 0.030 inch  (0.0025 ft)  layer of a polyurethane  based  adhesive 

known  commercially as CYBOND@ 4000 adhesive.   This  plate  (designated as 
the  basic  specimen) as well  as four  others,   which  are  essentially  the same 
except  that   the viscoelastic layer  has  additives for improved  thermal  conduc- 

tivity, were  provided by American  Cyanamid  Company. The thermal  conductivity 

of the  aluminum at 70° F is 101.7 BTU/hr-ft-' F[ Ref .  13 1 , and  the  thermal 
conductivity of CYBOND 4000 adhesive is 0.11 BTU/hr-ft-'  F at 200' F, For the 
aluminum  alone Hi/ki = Z(O.00 SZS)/lO 1 .7  = 0.000 103  hr-ft2 -O F/BTU and  for 

the  viscoelast ic  material alone CHi/ki = 0.0025/0.11= 0.0227 hr-ft2 -O F/BTU. 
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The total CHi/ki = 0.000103 + 0.0227 = 0.0228 hr-ft2 -"F/BTU. Using  this 
value of ZHi/ki, E = 0.9 and T1 = 257' F = 717O R,  A t  is determined  from 
Equation (8 5) to be 8.9" F. In a similar  manner  the  temperature  gradient  across 
the  aluminum  alone is 0.042O F. 

If the  temperature  gradient is considered to be  too high, C Hi/ki for 
the  viscoelastic  material   alone  could  be  lowered by either  making  the Hi 
smaller or the ki larger (see below  for  methods of increasing ki) . Either of 
these  changes  could affect the  damping  properties of the  structure.  The 
uncoupled  shear  parameter X, is inversely  proportional  to  the  viscoelastic 
layer   thickness  Hv so that  making Hv smaller  makes X, larger  which may 
or may not   increase  the  s t ructure  loss factor  depending  on  whether  the  original 
value of X. was  lower  or  higher  than  the optimum value (Xo)op. Decreasing 
Hv will   decrease  the  geometrical   parameter Y which,  depending  on  the  value 
of X,, , may or may not  decrease  the  structure loss factor. 

The  thermal  conductivity of the  viscoelast ic   mater ia l   can  be  increased 
by adding  to it other  material  having a high  thermal  conductivity.  This  can  be 
considered as changing  the  properties of the viscoelastic material  and  not as 
a change  in  the  structural  configuration.  Therefore, all of the  existing  theory 
would still be  applicable  and it would  be  necessary  only  to  determine  the 
thermal  conductivity  and  damping  properties of the  new material. 

The  four specimens with  improved  thermal  conductivity  had  the  following 
additives to the   bas ic   v i scoe las t ic   l ayer   which   was  CYBOND 4000 adhesive: 
Specimen 1 had a standard  aluminum  screen  (268  openings  per  inch  with 
0 .010  inch  diameter  wire)  imbedded  in  the  viscoelastic  layer:  Specimen 2 had 
39 percent  (by  weight)  graphite  powder,  superconductive  grade,  twenty 
micron  mesh  size,  manufactured by Consolidated-Astronautics  Inc. , Long 
Is land  Ci ty ,  New York; Specimen 3 was   the  same as Specimen 2 but  with  the 
metal screen of Specimen 1 added also; Specimen 4 was  the same as Specimen 2 

but  with a fibrous metal product  (Felt  Metal  type FM-127 manufactured by  Huyck 
Metals  Company,  Milford,  Connecticut)  imbedded  within  the  viscoelastic  layer. 
Thermal  conductivity tests were  performed by the  Stamford  Research  Laboratories 
of the  American  Cyanamid  Company  on  these  specimens.  The  thermal  conductic- 
ity values   were obtained using a COLORA thermo-conductometer.  The test 
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samples   were   d i sks  of laminate,  machined to a diameter of 0 .7  inches.  The 
measurements  were  made at a mean  temperature of 200OF. Peel  strengths of 

t hese  samples were  measured at room temperature. 

Using  the  thermal  conductivity  values of the   spec imens ,   the   th icknesses  

of the  individual  laminates,  and  the  thermal  conductivity of the  aluminum,  the 
thermal  conductivity of the  damping  material  was  calculated  for  each of the 
specimens.   These  four  specimens,  as well  as the  specimen  with  no  additives 

(basic specimen),   were  tested to determine  their  structure loss factors   in   the 

same manner as described  in  Section 5. 

All  of the  specimens  were 3 inches  wide  and 47 inches  long  except 

Specimen 4 which  was 30 inches  long. For all of the  specimens,   the   thickness  

of the   v i scoe las t ic   l ayer  Hv was  maintained at approximately 0 .030  inches.  
However, since they  were  not  exactly 0.030 inches ,  a corrected  structure loss 
factor  was  calculated  assuming Hv = 0.03.  The  frequency  range  over  which 

the  specimens  were  tested  was  approximately 1 0  - 1000 Hz. In  this  frequency 

range  the  structure loss factor  for  these specimens is approximately  proportional 
to   the   v i scoe las t ic   th ickness  Hv and  this is the  basis  for  the  corrected  structure 

loss factor. 

The resul ts  of all of the  measurements  and  calculations  described  above 
are  summarized  in  the  table  below;  however,  the  structure  loss  factor  data  has 

been  normalized  to  the  basic  specimen's loss factor since it is not  the loss 
factors of these  par t icular   specimens  that  is significant,   but  the  effect  of the 
additives to the viscoelastic material  on  the  change i n  loss factor. Also, for 

this  frequency  range (10  - 1000 Hz) the  ra t ios  of the  loss   factors   are   approxi-  
mately  constant so that  one  number  ( taken  at  100  Hz) is representative  of  the 

whole  frequency  range. 

From this   table  it can   be   seen   tha t   there  is a general   trend  that ,  as the 

structure  thermal  conductivity is increased,   the   s t ructure   loss   factor   and  the 

peel  strength  are  decreased. For these  particular.   specimens,   this same trend 
regarding  structure  loss  factor  would  hold  true i f  the   v i scoe las t ic   th ickness  Hv 

were  decreased  while  holding  constant  the  thermal  conductivity of the  visco- 
elastic material  kv.  For  purposes of comparing  the effects of changing Hv 
to   the effects of changing kv, consider  the  basic  specimen  having  values of Hv 
such  that  the  structure  thermal  conductivity  has  values  equal  to  Specimens 1 
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SPECIMEN BASIC 
SPECIMEN - 

STRUCTURE THERNLAL 
CONDUCTIVITY 0.608 
(BTU/hr-ft-O F) 

I DAMPING LAYER THERMAL I I 
I CONDUCTIVITY 

(BTU/hr-ft-O F) I 0 * 1 2  I 

I I I 

STRUCTURE  LOSS  FACTOR 
NORMALIZED  TO  BASIC 1 
SPECIMEN 

THERMAL CONDUCT 

0.90 2.50  3.25 

0.16 0.41 0..60 

40 90 80 

0.94  0.45  0.33 

THICKNE'SS OF DAMPING 
LAYER (in) 0.030 

CORRECTED  STRUCTURE 
LOSS FACTOR  NORMALIZED 1 
TO  BASIC SPECIMEN 

0.027  0.024 0 . 0 2 8  

1.04 0.56 0.35 

to 4 respectively , and a constant   value of kv = 0 . 1 2  BTU/hr-ft-'  F. The values 
of Hv can   be   ca lcu la ted  from the  relation 

HV 

kV kA k S  

H 
- +A= Hv -k HA 

where HA is the total thickness  of the  aluminum, kA is the  thermal  conductiv- 
i ty  of the  aluminum,  and  ks is the  structure  thermal  conductivity as given  in  
the  table  above.  Again it will   be  assumed  that   the  structure loss factor for 
these  specimens  in  the  frequency  range  10 to 1 0 0 0  Hz is proportional to the 
thickness  of the viscoelastic layer  hv. The  results of the Hv and  structure 
loss factor calculations  are  presented  in  the  following  table. 
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THEORETICAL SPECIMEN 1 

STRUCTURE  THERMAL 
CONDUCTMTY 
(BTU/hr-ft-O F) 

0.90 

THICKNESS OF DAMPING 
LAYER (in) 0.19 

I 
I 

STRUCTURE LOSS FACTOR 
NORMALIZED TO BASIC 
SPECIMEN 

0.63 

Comparing  these  results  witn  those  obtained  for  Specimens 1 to 4 above, 

it can  be  seen  that  except for Specimen 4 ,  it is better  from  the  structural loss 
factor  point of view to change kv  rather  than Hv in  order to get  improved 
thermal  conductivity. 

Returning to the  design example given  above (i. e. , determine At ,  
given  that T1 = 71  7 O  R and € = 0.9)  , the  quantity C Hi/ki for  the  four 
specimens  with  improved  thermal  conductivity is equal to 0.016 , 0.0063 , 
0.0043 and 0 . 0 0 2 2  hr-ft2 -'F/BTU, respectively.   Using  these  values  with 

Equation (85) ,  the  temperature  gradient  across  the  laminated plate is calculated 
t o   b e  5.3,  2 .5 ,  1 . 7  and 0.88O F ,  respectively,  for  Specimens 1 through 4.  

In  summary,  the  thermal  conductivity of viscoelastic shear-damped 

laminated  plates   can  be  increased by adding material of high  thermal  conduc- 

tivity to the  viscoelast ic  material or by reducing the thickness of the  visco- 

elastic material. Judging from the  results  described  above,  however,  it 

appears  that  the  preferred  approach is to add material of high  thermal  conduc- 
tivity to the  viscoelast ic  material s ince   th i s   causes  less of a deterioration of 

the  structure loss factor. 
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SECTION 7: RESULTS AND CONCLUSIONS 

The results of the research  investigation are: 

(1) A general  expression for structural  loss  factor and resonant frequency for 
any number of elastic elements  separated by layers of viscoelastic  material. 

(2) Specific  equations for structure  loss  factor and resonant frequency for two- 

elastic-element, symmetrical three-elastic-element, unsymmetrical three- 
elastic-element, and any number N identical-elastic-laminate  structural 
composites  with  viscoelastic shear-damping mechanisms. 

(3) Design graphs for the four types of structural  composites  defined i n  (2) 

above, from which the  structure  loss  factor and resonant  frequency ratio 
can  be read directly  without an iteration procedure. 

(4) Experimental verification of the theory and design procedures developed  to 
predict  structure loss  factor,  resonant frequency, and transmissibility of 
viscoelastic shear-damped structural  composites. 

(5) Evaluation of various methods for increasing  the thermal conductivity of 
viscoelastic shear-damped laminated plates. 

Specific  conclusions drawn are: 

(1) The structure  loss  factor q and resonant frequency ratio fo/fr  for  two- 
and three-elastic-element  structural  composites  are  functions of only three 
parameters: (1) the  viscoelastic material loss factor 8; (2) the uncoupled 
shear parameter X,: and (3) the  geometrical parameter Y. These param- 
eters  can be calculated  interms of frequency, and the material properties 
and cross-section dimensions of the structural composite. 

(2) For a given  value of viscoelastic material loss  factor 6 and geometrical 
parameter Y, there is an optimum uncoupled shear parameter (X ) that 
maximizes the  structure  loss  factor. The  maximum structure  loss  factor 

0 OP 

q m a x  is always less than the viscoelastic material loss factor 6 and 
approaches as the geometrical parameter Y approaches infinity. 

(3) The forms of the equations for structure  loss  factor q and resonant fre- 
quency ratio fo/fr for two-elastic-element and symmetrical three-elastic- 
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element structural compo,sites are  identical. Therefore, the same design 
graphs can be used for the two types of structural  composites  with  the 
proper definition of the uncoupled shear parameter X. and the geometrical 
parameter Y. 

(4) The equations for structu’re loss factor q and resonant frequency ratio 
f /fr  for unsymmetrical three-elastic-element  structural  composites  are 
not of the same form as  those for two-elastic-element and symmetrical 
three-elastic-element  structural  composites. However, the same design 
graphs can be used  to  obtain good approximations by applying a  corrective 

multiplier to  the uncoupled shear parameter X. . 

0 

(5) Structures  incorporating either  a symmetrical or unsymmetrical arrangement 
of three elastic elements  will  achieve approximately the same maximum 
structure  loss  factor q,,,. However, the frequency at which the max i -  
mum loss factor is attained  generally  will be lower for the unsymmetrical 
arrangement of the  three elastic  elements. 

(6) Three-elastic-element and N-identical-elastic  laminate  structural com- 

posites oan attain much higher values of structure  loss  factor q than two- 
elastic-element  structural  composites,  because of the  considerably higher 
values of the  geometrical parameter Y involved. While increasing  the 
number N of identical  elastic  laminates  increases  the  structure  loss 
factor q ,  the  rate of change of q with N substantially  decreases for 
values of N greater than approximately 4.  

(7) For a given  value of uncoupled shear parameter X. , there is an  optimum 
value of the  viscoelastic material loss factor /3 that maximizes the  struc- 
ture loss factor. The  optimum value of viscoelastic material loss  factor 
approaches uni ty  as X. approaches infinity (frequency  approaches  zero) 
and is greater than unity  for all other values of X. . Consequently, for the 
lower modes of vibration of the  structural  composite,  it may be undesirable 
for /3 to have a  value  greater  than uni ty .  

(8) With regard to  predicting  the  structure loss factor and resonant  frequency, 
the justification  has been established for assuming  there is an effective 
flexural  rigidity  equal to the real part of the complex flexural  rigidity. 
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(9) Based  on a statistical ana lys i s  of the  experimentally  determined  values of 
structure loss factor and  resonant  frequency,  the  theory  and  design  pro- 
cedures  for calculating  these  parameters  for  the  four  types of structural  
composites  indicated  in (2) above is satisfactory  within  accepted  engineer- 
ing  accuracy. 

(10) The  thermal  conductivity of viscoelastic  shear-damped  laminated  plates 
can  be  increased by adding  material of high  thermal  conductivity  to  the 
viscoelastic  material.  However, it appears  that   this  can  be  done  only 
at the  expense of the  structural  damping  and  the  peel  strength of the 
laminated plate. 

It is  anticipated  that  the  straightforward  design  procedures  presented 
in  this  report   will   greatly  simplify  the  analysis  and  design of structural  com-  
posites  with  viscoelastic  shear-damping  mechanisms.  Accordingly,  the  results 
of the  research  investigation  should  prove  useful to structural   design  engineers,  
especially  those  concerned  with  controlling  the  vibration  response of air-borne 
and  aerospace  s t ructural   assemblies .  
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APPENDIX A 

GENERAL LOSS FACTOR  EXPRESSION AND  SPECIFIC 
EQUATIONS  FOR  TWO-AND  THREE-ELASTIC-ELEMENT 

VISCOELASTIC SHEAR-DAMPED COMPOSITE  STRUCTURES 

59 



APPENDIX A 

GENERAL,  LOSS  FACTOR  EXPRESSION  AND SPECIFIC 
EQUATIONS  FOR TWO- AND THREE- ELASTIC-ELEMENT 

VISCOELASTIC  SHEAR-DAMPED COMPOSITE STRUCTURES 

The moment  equation  for a composite  beam  in  bending is [Ref .  2 1 

where 
M is the  moment 

(EI)* is the  complex  flexural  rigidity 

* is the  curvature  (assumed  the same for all elastic elements) 

(EI)o = C(EI)i = sum of the  individual elastic element  flexural  rigidities 

ax 

Fi is the  net   extensional  force  acting at the  center of an  individual 
e las t ic   e lement  

hi is the   d i s tance  from a reference  composite  neutral  plane  (zero 
extensional  strain)  to  the  center of an  individual  elastic  element 

L e t  di be   the   d i s tance  to the ith elastic element-measured from the  

center of the first elastic element.  Let  6i  be  the  distance  to  the ith e las t ic  

element  measured from the  composite  neutral   plane  for  the case where (EI)* 
= (EI), (i.e.,  where  the  shearing  modulus is infinite so that all of the elastic 
elements  are  completely  coupled).  These  dimensions as well  as D and 

are  defined  by  Figure 1, which  shows a beam  segment  and its assumed  strain 
distribution  diagram. From this  diagram it can   be   s een   t ha t  

N N N 
CFihi = CFidi - DCFi 
1 2 1 

Under  the  assumption of pure  bending 
N 
CFi = 0 
1 

(A-3) 
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so that  

N N 
CF. h .  = CFidi 
1 2 1 1  (A-4) 

The  net  extensional  force  on  an  element is obtained  by  multiplying  the 
extensional  st iffness  by  the  strain at its center.  

In  the  strain  diagram Qi is the  shearing  strain of the  ith viscoelastic layer  
as shown  in  the  Figure 2. From the  strain  diagram,  the  strain at the  center  of 
any elastic element is 

i 
€ . = € l + d . a ! - H  8 

1 1 V j=2  j 

Using  Equations (A-3) and (A-5) 

€ = - -  C K E  1 

K 1 2  i i  

or,  using  Equation (A-6) 

where 

Defining 

R~ = e ./CY 
3 

Equations (A-6) and (A-7) are combined to obtain 
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N 

Using  the  relation 

(A- 10) 

and  Equations (A-4), (A-5), and (A-9) 

and since 

6 .  = d i  - B 
1 

N N 2 

(EI)T = C Kidl? - 2 s C Kidi +% K T  
i= 1 i= 1 

The distance 5 is also defined as 

N 
C Kidi 

6 = i=l - 

K T  

Since & = 0, (A-13) can  be  written as  

N 
(EI)T = Kid: - L( c" Kidi)2 

i= 2 K~ i=2  
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Define 

Equations (A-11) , (A-l5), and (A-16) can  be  combined to give 

N 
C Fihi = (EI)T Z*Q 
i= 1 

The geometrical  parameter is defined asCRef. 1 1 

So that 

N 
C Fihi = (EIb Z* Y Q! 

i= 1 

(A- 1 6) 

(A- 17) 

(A- 18) 

(A- 19) 

Since 2 = o! , the  expression  for  the  complex  flexural  rigidity  can  be  obtained 
from Equations (A-1) and (A- 19)  as 

(EI) * = (E110 (1 + Z* Y) (A- 2 0) 

The structural  loss factor,  77, is defined  as  the  ratio of the  imaginary 
part to the  real   part  of the  complex  flexural  rigidity. 

(A- 2 1) 

I t  is necessary  to  determine  the N-1 values  of R. in  order to calculate  
Z* . To determine  the R it is necessary  to   consider   the  shear ing  re la t ions of 
the  viscoelast ic   layers .   Firs t  it will   be  assumed  that   these  layers  are  purely 
elastic and  then  when  the  solution is obtained  for  the elastic case, the  

1 

j 
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subst i tut ion of a complex  modulus  will  be  made  for  the  shearing  modulus of 
these   l ayers .  

The stress-strain  relation  for  any  layer is 

(A- 2 2) 

where 
G = shear  modulus of e las t ic i ty  

Si = shear ing  s t ress   in   the ith layer 

$-* = shear ing  s t ra in   in   the ith layer  
2, 

For a small sect ion of the  beam of length  dx  and  width  b,  the  area is 

A = b d x  (A- 2  3) 

The shearing  force is obtained by considering a sect ion of the  beam as shown 

in  the  sketch  below 

F. - 
1 T 

dx - 

a Fi 
Fi+- ax  dx 

aFi 
Since CFi = 0 and c Fi + ax dx = 0 ,  

a Fi 
ax C-dx=O 

Therefore,  the  sum of the  forces  above 
the ith layer  must  be  equal  but 

opposite  in  direction  to  those  below 

the ith layer.  This  sum is the 
shearing  force so that  

N aF, 
-c +x 
j =i 

si = A (A- 24) 

Combining (A-22) , (A-23) ,  and (A-24) 

bG$i = - C a& (A- 2 5) 
N a F .  

j =i 
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Now combining  Equations (A-5) , (A-8) , (A-9) and (A-25) and  differen- 
tiating,  assuming  that Ri is not a function of x 

K .  N -2T 2Kidi - H (A-  2 6) 

Equation (A- 26) implies that  cx = * ax has a sinusoidal  wave  shape.  Therefore, 
the  assumption  that  Ri is not a function of x implies a sinusoidal  wave 
shape. For other  than  sinusoidal  wave  shapes,  Ri must  be a function of x, 
so that   th is   analysis  is strictly  applicable  only  for  sirlusoidal  wave  shapes. 
Define a wave  number, p for  this  differential  equation  and  rearrange  the 
summations so that* 

bG. R: 

Define a shear  parameter as 

bG 
v T  

x‘= H K p2 

(A- 2 7) 

(A- 2 8) 

This  shear  parameter is not to b e  a general  definition of a shear  parameter. 
In the  analyses  that   follow a shear  parameter is defined  for  each  type of 
structural  composite. The purpose of defining a shear  parameter is to have a 
convenient  grouping of constants  and to non-dimensionalize  the  equations. 

The N-1 equations  for  the Ri are  
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When G is made  complex,  there  are 2(N-1) equations  for tt 

(A- 2 9) 

le N-1 Re(Ri) and 

the N-1  Im(Ri). Also, G should  be  writ ten as G* to   ind ica te  a complex 

quantity. 

G* = G' (1 +i 8) (A- 3 0) 

where G' is the  real   part   and is the  ra t io  of the  imaginary  part  to  the 
real  part (i.e., loss factor) of the  complex  shear  modulus G* of the  visco-  
elastic layers l   and i = f i  . Equation (A-28) should  be  rewritten as 

b G* x' = HvKT  P2 
(A-3  1) 

Now the set of equations  represented  by  Equation (A-29) can  be  solved 

for  the  real  and  imaginary  parts of the R i ' s .  With  these,  the  complex  number 
Z* can  be  obtained from Equation (A-16) . However,  the  wave  number p is in  

Equation (A-29) and it is also a function of Z*. The wave  number p is related 

to  the  frequency of vibration f by 

(A- 3 2) 

where w is weight  per  unit  length of the  composite  structure,  g is the 
gravitational  acceleration  constant,   and (El), is the  effective  flexural  rigidity 

of the  structure  for  the  resonant  mode of vibration  being  considered. 

I t  is assumed  that  

(EI), = ReCEI)*l= (EI)o c1 + Re(Z*)YI (A-3 3) 
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Therefore,  an  iteration process is required to determine Re(Z*). It is assumed 
tha t  (EI), will  be  bounded  between (EI)o (for  the  completely  uncoupled 
condition),  and (EI)m (for the  completely  coupled  condition) so that  

0 Re(Z*) 1 (A-34) 

This  bounding of Re(Z*) makes  the  i teration  process  simpler  which  can  be 
important  when a large  number of simultaneous  equations  must  be  solved  during 
each  i terat ion cycle. 

To apply  the  general   analysis to two-elastic-element  structures,  set 
N = 2 in  Equation (A-16) .  Since  there is only  one  di for this  structure c see 
Figure  3(a) 1, let & = d.  Now Equation (A -16) becomes 

From Equation (A-15) 

(EI)T = Ka d2 (1 -  - K2 

KT 

and 

The shear  parameter  for  this case is defined as 

s o  that  Equation (A-31) becomes 

x =  / K 1  K2 x* 
K2T 

(A- 3 5) 

(A- 3 6) 

(A-3 7) 

(A-38) 

(A- 3 9) 

Substituting (A-39) into (A-29) with N = 2 gives  
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d R 2  = -(-) HV 1 

Substituting (A-36) and (A-40) into (A-35) gives  

z* = X* 
1 +x* 

$9 

(A-4 0) 

(A-4 1 )  

Equations (A-41),  (A-38) and (A-30) define  the  complex  coupling  parameter Z* 

for  the  two-elastic-element case. 

To apply  the  general   analysis to three-elastic-element  structures,  

set N = 3 in  Equation (A-16) to  obtain 

(A-4 2) 

From Equation (A-15) 

(EI)T = K z d z  $- K 3  k2 - - ( K 2 d 2 + K 3 & ) 2  
KT 

and 

(A-4 3 )  

K = K 1 +   K z  + K 3  (A-44) 
T 

Setting N = 3 in  Equation (A-29) gives  the  following set of  SimUltan@OUS 

equations  for R2  and R 3  

(A-4 5) 

For the  symmetrical  three-elastic-element case, set K 3  = K 1  , d3 = 2d, 

and da = d to agree  with  the  definitions  in  Figure 3(b). Also , for this  case 
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the  shear  parameter is defined as 

x* = bG* 
K1 Hvp2 

s o  that  Equation (A-31) becomes 

(A-4 6) 

(A-4 7) 

with  these  substi tutions  and  using  Equations (A-43) and (A-44) ,  Equation (A-42) 
becomes 

and  the  solution of Equation (A-45) is 

so that  

z* = X* 
1 +x* 

(A- 4 8) 

(A-49) 

(A- 5 0 )  

Equations (A-50),  (A-46) and (A-30) define  the  complex  coupling  parameter Z* 

for the  symmetrical  three-elastic-element case. 

For the  unsymmetrical  three-elastic-element case, set K3 = K1 , Ka = K1 , 
K1= K2 , d3 = d l  , and  d2 = d2  to  agree  with  the  definitions  in  Figure  3(c).  Also 
for  this case the  shear  parameter is defined as 

So that  Equation (A-31) becomes 

(A- 5 1) 

(A- 5 2) 

69 



With these substitutions  and  using  Equations ‘(A-43) and (A-44),  Equation (A-42) 

becomes 

(A- 5 3) 

and  the  solution of Equation (A-45) is 

(A- 54) 

so that 

where 

(A- 5 5) 

Equations (A-55), (A- 51) and (A-3 0)define  the  complex  coupling  parameter Z* 

for  the  unsymmetrical  three-elastic-element case. 

The equations  for  defining  the complex coupling  parameter Z* for 
the  N-equal-laminate case can  a lso  be  developed from the  general   analysis,  
however,  they  have  been  derived  independently  in  Appendix B. 
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APPENDIX B 

LOSS  FACTOR OF N IDENTICAL-ELASTIC  LAMINATE 
VISCOELASTIC SHEAR-DAMPED COMPOSITE  STRUCTURES 
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APPENDIX B 

LOSS FACTOR OF N IDENTICAL-ELASTIC LAMINATE 
VISCOELASTIC SHEAR-DAMPED COMPOSITE STRUCTURES 

Shown  below is a sketch of an  elemental   section of a beam for an  odd 
number of laminates = N. 

DISTANCE  FROM 
MIDDLE LAYER 

beam  width = b 

“I 

ea 

el 

I/ - t STRAIN 

Assume  that  the  strain  distribution  below  the  middle  laminate is equal  but 
opposite  in  sign to that  above  the  middle  laminate. The strain at the  center 

of the  middle  laminate is zero. The s t ra in  at the   cen ter  of any  laminate is 

given by 

i 

j=1 
E i = i ( H + H v ) Q !  - Hv 8 j  

43 j Define R. = Q! and d = H +  Hv 
1 

i 

j = l  
E i  = (id - Hv C Rj  ) Q! 
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The extensional force on each  laminate at  its center is the extensional  stiff- 
ness times  the strain  at  the  center of the  laminate. The extensional  stiffness K 
is 

K =  EbH (B-3)  

where E is modulus of elasticity. 

F. = K C i  
1 

Fi 
K dff Defining Qi = - , and using Equations (B-2) and B-4)  

Hv i 
Q . = i - -  R 

j = l  j 1 d 

The shear  relation for any viscoelastic  layer is 

(B-4)  

(B- 5) 

where C ~ ' d x  is the s u m  of all  forces on the  elements above the  visco- 
j =i 

elastic-layer.  It is assumed that the extensional  forces i n  the viscoelastic 
layers  are zero and,since  the sum of all  forces on  any cross-sectional  plane 
is zero,  the sum of forces on all  elastic  layers above a viscoelastic  layer mus t  
be equal but opposite in  sign to  the sum of forces on all  elastic  layers below 
that  viscoelastic  layer. This sum of forces is then  the  shearing force on that 
viscoelastic  layer. The quantity  "bdx" is the  elemental  area so that the 
numerator 0.f Equation (B-6) is the  snearing stress, and G i  is the  shearing 
strain of the layer. The modulus of rigidity G relates  shearing  stress to 
shearing  strain. Since  the layer is viscoelastic, G will be a complex 
number. 
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Assuming  that R is no t  'a function of x, Equation (B-6) can   be  
j 

differentiated  with  respect to x to give 

Define a wave  number p" for  this  equation  in (Y 

2 b GRi 
P =  n 

Kd Qj 
j =i 

or 

Substituting  Equation (B-8) into (B-5) gives  

1 i n  
Q i = i - -  C C QK ; x = * bG 

x* j=1 K=j K H~ 3% 

Also 
i n  i n 

QK = jQ. + i Qj 
j=1 K=j j = l  J j = i + l  

so that  Equation (B-9) becomes 

n 
Q ,  = i - -  [ k jQ. + i  Q j  

1 X* j = 1  J j = i + l  1 
The flexural  rigidity is implicitly  defined by 

n 

i= 1 
M = (EI)*'a! = (EI), a + 2 idFi 

(B-9) 

(B-10) 

(B-11) 

(B- 12) 
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where M is the  total   moment  acting  on  the  elemental  beam sec t ion ,  (EI)* is 
the  flexural  rigidity of the beam, (EI)o is the  sum of the  individual elastic 
element’s flexural  r igidit ies,  2CidFi is the  moment caused  by the  extensional  
forces  and (EI),a is the moment caused  by the  moments  on  each elastic 

eIement. C idF. gives the  sum of moments  above  the  middle  laminate,  and 

there is an equal  moment  due to the laminates below  the  middle  laminate. 

n 

i= 1 1 

Substitute (EI), and Fi = kdQia into  Equation (B-12) 

For plates with  width  b,   height H and  modulus of e las t ic i ty  E ,  

b$ K = EbH and (EI), = NE 7 

so that  

The geometrical  parameter is 

y = (N“ - 1) (1 + 2v)” 

so that  

2 Kd2 24Y - 6Y Y -= 
(EI), N ( N ~  -1) 

- 
n(n+l)  (2n+l) 

= -  
i2 

L, 

i= 1 

Substituting  Equation (B- 16) into (B- 13) 

n 

(EI)*, = (EI)* [ 1 + i=l y] 

i= 1 

(B- 13) 

(B-14) 

(B-15) 

(B- 16) 

(B-17) 
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Define 
n 

i= 1 
n 
c i2 
i= 1 

i Qi 
Z" = (B- 18) 

The Qi will  be  complex  numbers  because of the  dependence on X*. 

Z* is also a complex  number  and  the  structure loss factor is given by 

The  equa 

Im(Z*)Y 
rt = 1 +Re(Z*)Y 

tions  for Qi are  given by Equation (B-11) . 

(B-19) 

When G is made 
complex, 2n l inear  algebraic  equations mus t  be  solved  simultaneously to 
obtain  the. n unknown  values  of Re(Qi) and  Im(Qi),  respectively.  However, 
it is only  necessary to obtain  answers for two of these  quant i t ies .  From 
Equation ( B - l l ) ,  l e t  i = n 

Q n = n - + * [  j = l  E j Q j + O ]  = n - p  l n  Z i Q  i 
i= 1 

SO that  

n 
C iQi = X*(n-Qn) 
i= 1 

and 

z* = 6 X*(n-Q" 
n(n+l)  (2n+l) 

Equation (B-11) can  be  rewri t ten as 

i-1 n 

j = l  J 
jQ. + (i+X*)Qi+i Qj = ix" 

j= i+l  

When G is complex,  write G as G* = G'( 1 + i  B )  and 
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~~ 

Equation (B-23) c a n  b 

i- 1 

bG' ' X* =x(1 +is) ; X =T  
HV 

e separated  into real and  imaginary  parts 

n 
j Re(Qj)  +(i+X)Re(Qi)+ i Re(Qj) -Xp Im(Qi) = iX 

j = l  j= i+l  

(B-24) 

(B-25) 

i- 1 n " 

C j Im(Q.)+(i +X)Im( Qi)+ i ')3 Im(Qj) + XB Re(Qi) = iXS 
j = l  1 j= i+l  

Equation  (B-25)represents 2n equations.  These  equations  must  be  solved  for 
Re(Qn) and Im(Qn). From Equation (B -22) 

z =  * 6x [n - Re(Q ) +  fiIm(Q ) + i IBn-BRe(Qn)-Im(Qn)j] 
n(n+l)  (2n+l) n  n 

(B-26) 

where i = f l  , G' ( the  real   par t  of G*) is the  storage  modulus,  and 6 
(the  ratio of the  imaginary to the real part of G*) is the loss factor of the 
visc.oelastic material. 

For an  even  number of laminates  the  procedure is similar to the  above. 

L e t  n = -. The following  equations  will  replace  Equations (B-11)  I (B-l7), 

and  (B-18),  .respectively. 

N 
2 

1 
n 

Qi = i - / 2  - ( j -  '/2)Q. + (i- '/2) Qj 1 j = i + l  1 
n 
C (i-'/2)Qi 

c (i- /212 
i= 1 

(EI)* = (EI), [ 1 + i;l Y] 

(B-27) 

(B-28) 

(B-29) 

i= 1 
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Developing  these  equations similar to  the  above,  Equations (B-25) and (B-26) 

will  be  replaced by the  following: 

i- 1 n 

j = l  j = i + l  
(j-1/2)Re(Qj)+(i-l/2  +X)Re(Qi)+(i-l/Z) Re(Qj)-Xp Im(Qi)=(i-’/2)X 

(B-30) 
i- 1 n 

j = l  j= i+l  
C (j-1/2)Im(Qj)+(i-1/2+X)Irn(Qi)+(i-1/2) Im(Qj)+XpRe(Qi)=(i-1/2)Xk? 

Z* = n(4n” - 1’;) - [n-1/2-Re(Qn)+61m(Qn)+i ffi(n-1/2)-pRe(Qn)-Im(Qn)]] (B-31) 
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APPENDIX C 

COMPARISON OF THE  SYMMETRICAL  TO  THE  UNSYMMETRICAL 
THREE-ELASTIC-ELEMENT  VISCOELASTIC  SHEAR-DAMPED 

COMPOSITE STRUCTURE 

In  this  analysis the  subscr ipts  s and u s tand for symmetrical  and 

ynsymmetrical  respe'ctively . The complex  flexural  rigidity  expression for 
batn  the  symmetrical  and  unsymmetrical cases can   be   pu t   i n   t he  form 

where (EI), is the  sum of the  individual  flexural  rigidities of the elastic 
elements 

Y is the geometrical parameter 

1 +x* x* (see Equation A-50) z*s= - 

Z f U =  f (X* Klz , d12) (see Equation A-55) 

From Equation (31) 

x =x,,/=;& = C(--); G'  Z = Re(Z*) f (c-2) 

The four  quantities Re(Z:) Im(Z* ), Re(Z\) ,  Im(Z\) are given by Equations 

(601,  (611,  (63) and (641, respectively.  In  both cases the  loss factor q is 
s 

Im (z*)Y 
= 1 +Re(Z*)Y 

First  taking l i m i t s  as X -, 0: 
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Hence: 
L i  m 

x + 0 qs = BYsX0 
0 

Lim 
.%- 0 B Y U X O  

Then' taking limits as X + : 

Hence: 

Lim - 2 YS - 1  

xo'" % - (1 + B 2 ) ( 1  +Ys) J r n S  x0 

(E - 2) B Y u  
L im 
x o + m r l U  - (1 + 8 " ) ( 1 +  Yu) JT" - 

U 

(C-4a) 

(C-4b) 

(c-sa) 

'( C- 5b) 

Equations  (C-4)  and  (C-5)  show  that  when is plotted  versus X, on log 

paper,  there is a low  shear  parameter  asymptote (as Xo+ 0) with a s lope  of +1 
and a high  shear  parameter  asymptote (as X,+ ) with a s lope of -1. The value 
of Xc, at the  point  where  these  asymptotes  cross  each  other (Xo)c is 

obtained by equating  the  value of r) in  Equation (C-4) to that  in  Equation (C-5) 
for  both  the  symmetrical  and  unsymmetrical cases. 

1 

(xO)cs = [ (1 + P " ) ( l  +Y S ) J = =  I" (C-sa) 
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Dividing Equation (C-6p) by Equation  (C-6b) 

(C-6b) 

A s  an approximate method of evaluating qu, assume' vu = vS if the 

geometrical  parameter is taken as 

In other  words, rls versus X, , multiply the  scale by [ c4 1 (Cl Ca c, C3 - q I o  

obtain qu versus X,. To determine how  much error is involved i n  this procedure, 

first calculate the  values of the  asymptotes of this approximate method and 

compare to  the  true  asymptotes. Subscripting the  loss factor r )  as  v , .  11 where 

i = L for X, .-) 0 asymptote 
= Hfor X, -, asymptote 

j = A for approximate solutions 
= E for exact  solution 

(C-9b) 
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(C-9c) 

(C-9d) 

There is no  simple  expression  for  the  per  cent  error at intermediate  values of 
x0 , however,  for all cases tried  the maximum error &a was  s l ight ly  less and 
of opposite  sign  than  the  errors  on  the  asymptotes €1 as indicated  on  the  sketch 

sketch  below. 
APPROXIMATE 

h 

4 
a, 
(d u 
cn 
tn 
0 
v 
4 

F 

2 
(2 
2 
s 
u 
rn 

4 

UNCOUPLED SHEAR  PARAMETER, Xo (log scale) 

The  biggest  error  occurs  when  the  parameter  dla = 1, in  which case €1 

represents  a 10.5 per  cent  error, 
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APPENDIX D 

EQUIVALENCE OF THE LOSS FACTOR  EXPRESSIONS 
OF 

DiTARANTO [REF. 4 1  AND UNGAR c 3  1 

DiTaranto’s  Equation (36) can  be  wri t ten  in   the form 

and  substituting X = - ho into  DiTaranto’s  Equation (35) and  rearranging 

Using  the  definitions of Y and X in  Ungar’s  Equation  (4.7),  the  following 
substitutions  can  be  made: 

Substituting  the  expressions  in  Equations (D -1) , (D-3) and (D-4) into 

Equation (D-2) and  rearranging 

This  equation  for loss factor rl would  be  identical  to Ungar’s  Equa- 

tion (4.7) i f  p” = . From Ungar’s  Equation  (4.8) , the  real part  of the  complex 
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flexural rigidity B* is 

x(x + 1) + (x Re(B*) = (B1 + B 3  ) 

Assuming that for viscoelastic shear-damped structural  composites,  there is 
an  effective  flexural rigidity equal  to  the  real part of the complex flexural 
rigidity,  the wave number p is related  to  the  circular frequency w1 by 

- p a 2  '" - Re(B*) 

where P is the mass per u n i t  length of the beam. Using Equation (D-6), 
Equation (D-7) can  be  solved for p a 2  as  

Also substituting Equations (B-3) and (-4) into (D-1) and  solving for pol2  
gives 

Equating Equations (D-8) and (D.-9) results i n  

P2 =hb (D - 10) 

and,  therefore, DiTaranto's  equation for loss factor is equivalent  to  Ungar's 
i f  the  assumption is made that  there is an  effective  flexural rigidity of shear- 
damped structural  composites  equal  to  the  real part of the complex  flexural 
rigidity. 
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APPENDIX E 

GENERAL LOSS FACTOR  EXPRESSION FOR THE  SYMMETRICAL THEE- 
ELASTIC-ELEMENT  VISCOELASTIC  SHEAR-DAMPED  STRUCTURAL COMPOSITE. 

The general   expression for the loss factor of an  axial ly  uniform 
composite  beam is given as Ref. 31 

where 

p is the  wave  number  for  the  assumed  sinusoidal  wave 
shape of the  beam 

the  subscr ipt  n s tands for the  nth  substructure of the 

composite  structure 

a is the  extensional loss factor 

K‘ is the real part of the  extensional   s t i f fness  (KA = E: An, where 
n 

n 
EA is the real part of Young’s  Modulus) 

is the real part of the  flexural  rigidity (BA = E’ I  where  In is 
the  moment of inertia) 

BA n  n‘ 

P is the   shear  loss factor 

G k  is the real part of the  complex  shear  modulus 

An is the  cross-sectional  area 

Rn 

n 

- 
and pn are  defined by Equation (1.6) of Reference 1 as* 

For a t i m e  dependent  function 
y(t) = yo cos( at + e) 

* Quantities  with  bars  over  them are phasors. 
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The phasor,  y ,  is defined  by 
- 

The phasor y is a complex  number 

so that  
r 

R e  17 eiO ‘1 = 4- cos (. t + tan-’ &) Y 

YR 

Note that   the   phasor ,  y , itself is not  dependent  on t i m e  but  on  the 
magnitude  and  phase of the  t i m e  dependent  function. 

- 

In  Equation (E-2), cp is the  angular  displacement at a cross-sect ion of 
the  beam so that,for a beam  in  pure  flexure, * ax  i6 the curvature.  It is assumed 
tha t   a l l  elastic elements  undergo  the same curvature * ax . The t i m e  dependence 
of cp is taken  care  of by assuming a sinusoidal t i m e  dependence  and  using 
phasors so that 

*=& ax d x  (E-3) 

Since all elastic elements  have  the same curvature,  there is no  subscript  
on && . s is the  phasor  for  translational  displacement, so that  the 
extensional  strain at its neutral axis is 

d x  n 

Finally, 9, is  the  phasor  for  the  average  shear  strain. 
- 

I t  is assumed  that  

and,  therefore 
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Differentiate  Equation 

Equation (E- 2) 

and use with  Equations (E-4) and (E-5) i n  

- 

For the   spec ia l  case of the  symmetrical   three-elastic-element  structure,  

only  the  extensional  strain of one elastic element   and  the  shear   s t ra in  of the 

assoc ia ted  viscoelastic element  must  be  considered.  Consider  the  following 

ske tch  of the  three-elastic-element  beam  and  the  associated  strain  diagram. 

ELASTIC  ELEMENT 
VISCOELASTIC  ELEMENT .......... .......... .......... 

4 ! r Q  
............. ............... ............... 

\ \ , \ \v COMPOSITE NEUTRAL  PLANE - 

.................. NEUTRAL  PLANE 

- 1  OF ELASTIC  ELEMENT .......... ............ , , .... \...\ 

I 
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From the  geometry of the  strain  diagram 

For small curvatures  and  for  the  thickness of the  viscoelastic  element  approxi- 
mately  constant  and  equal to Hvt  and also for yl > > Hvt  the  average 
shear   s t ra in  is approximately  equal to 9 as shown  in   the  sketch.  

Using  phasors 

Due to  the  symmetry  only  the Kn for  one elastic element  and pn for  one 
viscoelastic  element  need  be  considered.  Therefore,   dropping  the  subscript  n 
and  using  Equations (E-7) (E-8) and (E-9) 

- 
R = y1 + ya - Hv(F- 1) (E-10) 

The extensional  force  on  the elastic element is KC where K is the  
extensional  st iffness of the elastic element. The net  force  on a small element 
of the elastic element of length,   dx,  is 

(E-11) 

where F = shearing  force. 
S 

The average  shear ing  s t ress  is obtained by multiplying  the  average 
value of the  perimeter of the   c ross   sec t ion  b by the  element,   dx.  The 
stress-strain  relation is 

FS 
" 

bdx - GJ, 

Using  Equations  (E-7) to (E-12) 

(E- 12) 

(E- 13) 
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The wave  number for this  equation is p so tha t  

bG 
R K, 

- - 
D 

(E-14) 

Combining  Equations (E-10) and (E-14) 

(E- 15) 

bG 
where d = yl + y2 + H, and X* = . When G is a complex 

H”KP2 
number i t  is wr i t t en   a s  G* which  can  be  e-xpressed  as 

G* = G ’ ( I +  ip )  (E-16) 

where p is the loss factor of the  viscoelast ic   mater ia l .  Now X*, def ined   as  

a complex  shear  parameter,   can  be  writ ten as 

X* = X( 1 + is) 
and a shear  parameter X is defined as 

Now the  quantit ies 

and 

bG‘ X =  
HVKP2 

(E-17) 

(E-18) 

(E-19) 
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become 

(E-20) 

It is assumed  tha t   the   loss   fac tors  of the elastic elements   are   zero  and 
tha t   the  elastic elements  do  not  shear.  Also, it is assumed  that   the   extensional  
stiffness  and  flexural  rigidity of the  viscoelastic  elements  are  zero.   Therefore,  
the  first  term  in  the  numerator of Equation (E-1) is zero. 

The second  term  in  the  numerator  and  in  the  denominator 
viscoelast ic   e lements .  They are  

Cfi G’ A = 2 8 G ’ b  HVlTl2  n n n  

(E- 2 1) 

pertain to the  two 

(E-22) 

and 
CG’ A I Fnl = 2G’bHvl PI2 n n  (E-23) 

The first  term  in  the  denominator  pertains  to  the  three elastic elements.   Since 
the  extensional  strain at the  neutral   plane of the  main elastic element is zero,  
its value of E is zero  and 

p2C(Kk1 Enl ”+ BA) = p2 [2KIRI2 + (EI)ol (E-24) 

where (EI)o = C B k  

For  this  structure  the  geometrical  parameter is 

(E-2 5) 
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Combining Equations (E-17) and (E-20) to (E-25) with Equation (E-1) gives 

PYX 
rl = 1 +(2  +Y)X+(l +B")(1 +y)xZ (E-26) 

This is the same equation as  was  obtained for the symmetrical  three- 
elastic-element beam where  the elastic elements  are  separated by layers of 
viscoelastic  material. The only  difference  in  the two cases is the  definition 
of b a s  illustrated below. 

b = 4s .,I 
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I -ii f i l., 
Figure 1. - Elemental  section  and  strain  diagram of a beam-comprised 

of N elastic  elements  separated by viscoelastic  layers 
undergoing  flexural  vibration 



dx 

Figure 2.  - Elemental section of two elastic elements separated by 
a viscoelastic  -layer undergoing flexural  vibration 
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Figure 3 .  - Cross-sections of four types of viscoelastic  shear- 
damped structural  composites: (a) two-elastic element; 
(b) symmetrical three-elastic-element; (c) unsymmetrical 
three-elastic element; and (d) N identical-elastic- 
laminate 
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Figure 4 .  - Typical  two-elastic-element  composite  structures , 

. . .. 
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Figure 5. - Typical  symmetrical  three-elastic-element  structural 
composites 
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Figure 6. - Typical  symmetrical  three-elastic-element bar and 
tube  designs 
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Figure 7 .  - Typical  unsymmetrical  three-elastic-element  structural 
composites 
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Figure 8. - Frequency  ratio  for  the  resonant  frequencies W r  for 
TA, TR, Ha,  and M; for  the  damped  free  vibration 
natural   frequency  ad;  and  for  the two approximations 
OR and wNI 
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Figure 9 .  - Structure loss factor  and  frequency ratio of two- and 
three-elastic-element  structural  composites  with 
geometric parameter Y = 0 . 1  and 0 .15  
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Figure 10 .  - Structure loss factor  and  frequency  ratio of two- and 
three-elastic-element  structural  composites  with 
geometric  parameter Y = 0 . 2  and 0 . 3  
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Figure 11. - Structure loss factor  and  frequency  ratio of two-  and 
three-elastic-element  structural  composites  with 
geometric  parameter Y = 0 . 4  and 0 .  5 
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three-elastic  element  structural   composites  with 
geometric  parameter Y = 0 . 6  and 0 . 7  
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Figure 15 .  - Structure loss factor  and  frequency  ratio of two-  and 
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Figure 16 .  - Structure loss factor  and  frequency  ratio of two-  and 
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geometric  parameter Y = 4 and 6 
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Figure 18. - Structure loss factor  and  frequency  ratio of two- and 
three-elastic  element  structural   composites  with 
geometric  parameter Y = 15 and 20. 
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Figure 2 1 .  - Structure loss factor  and  frequency  ratio of two-  and 
three-elastic-element  structural   composites  with  the 
viscoelastic mater ia l   loss   factor  B = 0.07 
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Figure 22 .  - Structure loss factor and frequency ratio of two- and 
three-elastic-element  structural  composites with the 
viscoelastic material loss factor j?= 0.1 
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Figure 23 .  - Structure loss factor  and  frequency  ratio of two-  and 
three-elastic-element  structural   composites  with the 
viscoelastic  .material  loss factor P = 0 . 1 5  
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Figure 24. - Structure loss factor and  frequency  ratio of two-  and 
three-elastic-element  structural  composites  with  the 
viscoelastic  material  loss factor S = 0 . 2  
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Figure 25. - Structure loss factor  and  frequency  ratio of two- and 
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Figure 26 .  - Structure loss factor and frequency  ratio of two- and 
three-elastic-element  structural  composites with the 
viscoelastic material loss factor B = 0.3 
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Figure 30 .  - Structure loss factor and frequency ratio of two-  and 
three-elastic-element  structural  composites with the 
viscoelastic material loss factor 6 = 0 .8  
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Figure 32 .  - Structure loss factor  and  frequency  ratio of two-  and 
three-elastic-element  structural  composites  with  the 
viscoelastic  material  loss factor /3 = 1 . 2  
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Figure 3 3 .  - Structure loss factor  and  frequency  ratio of two-  and 
three-elastic-element  structural  composites  with  the 
viscoelastic  material loss factor P =  1 . 5  
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Figure 34.  - Structure loss factor and frequency ratio of two- and 
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Figure 35. - Structure loss factor and frequency ratio of two- and 
three-elastic-element  structural  composites with the 
viscoelastic material loss factor P =  3 
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Figure 36.  - Structure loss factor and frequency ratio of two- and 
three-elastic-element  structural  composites with the 
viscoelastic material loss factor fl= 4 
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Figure 37 .  - Structure loss factor  and  frequency  ratio of two-  and 
three-elastic-element  structural  composites  with  the 
viscoelastic  material  loss factor 8 =  5 
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Figure 45.  - Ratio of the  structure loss factors of unsymmetrical  and 
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Figure 46 .  - Ratio of the  structure loss factors of unsymmetrical  and 
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Figure 4 7 .  - Structure loss factor  and  frequency  ratio of N identical-  
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Figure 48.  - Structure loss factor and frequency ratio of N identical- 
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Figure 4 9 .  - Structure  loss  factor  and  frequency  ratio of N identical- 
elastic-laminate  structures  with N = 3 and  viscoelastic 
thickness  parameter V = 0 and 0 .05  
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Figure  50. - Structure loss factor  and  frequency  ratio of N identical- 
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Figure 51. - Structure loss factor  and  frequency  ratio of N identical-  
elastic-laminate  structures  with N = 4 and  viscoelastic 
thickness  parameter V = 0 and 0 . 0  5 
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Figure 52. - Structure loss factor  and  frequency  ratio of N identical-  
ela$tic-laminate  structures  with N = 4 and  viscoelast ic  
thickness  parameter V = 0 .1  and 0 . 1 5  
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Figure 53. - Structure loss factor  and  frequency  ratio of N identical-  
elastic-laminate  structures  with N = 6 and  viscoelastic 
thickness  parameter V = 0 and 0 . 0 5  
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Ggure 54.  - Structure loss factor  and  frequency  ratio of N identical- 
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Figure 55. - Structure loss factor  and  frequency  ratio of N identical-  
elastic-laminate  structures  with N = 8 and  viscoelastic 
thickness  parameter V = 0 and 0 . 0  5 
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Figure 56. - Structure loss factor  and  frequency  ratio of N iden t i cd -  
elastic-laminate  structures  with N = 8 and  viscoelast ic  , 

thickness  parameter V = 0 . 1  and 0 .15  
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Figure 57.  - Maximum  structure loss factor for 'N identical-elastic- 
laminate  structures  with N = 2 ,  3 , 4 ,   5 ,  6 ,  and 8 and 
Hv = 0 
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Figure  58. - Optimum  uncoupled  shear  parameter for N identical-  
elastic-laminate  structures  with N = 2, 3 ,  4 ,  5, 6 , and 8 
and H, = 0 
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Figure 59. - Structure loss factor  and  resonant  frequency  for  the  beam 
considered  in  the  design  example 
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Figure 60. - Comparison of the  experimental  .and  theoretical  structure 
loss factors  and  .resonant  frequencies for the  beam 
considered  in  the  design  example 
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Figure 61 .  - Cross-sect ions of structural   composites  having  viscoelastic 
layers  parallel  to the  neutral  axis of bending  fabricated  for 
experimental  evaluation of structure loss factors and 
resonant  frequencies.  
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Figure 6 2 .  - Cross-sect ions of bar  and  tube  designs  fabricated  for 
experimental  evaluation of structure loss factors  and 
resonant  frequencies 
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Figure 6 4 .  - Experimental   system  for   measuring the loss f ac to r s  and 
resonant frequencies   of   composi te   s t ructural   beam  specimens 
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Figure 65 .  - Exponentially  decaying  sinusoidal  vibration,  with a natural 
period T r ,  for various  values of loss factor 7 
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Figure 68. - Theoretically  predicted  and  experimentally  determined  values 
of structure  loss  factor of a two-elastic-element  free-free 
beam  having a geometrical  parameter Y = 2.. 33  and a shear 
parameter  coefficient C = 0.49  1 
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Figure 6 9 .  - Theoretically  predicted  and  experimentally  determined  values 
of s t ructure  loss factor  of a two-elast ic-element   f ree-free 
beam  having a geometrical   parameter Y = 3 . 4 8  and a s h e a r  
parameter   coeff ic ient  C = 0.387 
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Figure 70 .  - Theoret ical ly   predicted  and  experimental ly   determined  values  
of s t ruc ture  loss fac tor  of a two-elast ic-element   f ree-free 
beam  having a geometr ical   parameter  Y = 0.622  and a s h e a r  
parameter   coeff ic ient  C = 1 . 2 1  
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Figure 71 .  - Theoretically  predicted  and  experimentally  determined  values 
of  structure loss fac tor  of a two-elastic-element  free-free 
beam  having a geometrical   parameter Y = 3.46  and a s h e a r  
parameter   coeff ic ient  C = 0.403 

168 



L 
= 10.2 X 1 o z p s i  

E2 = 10.2 X 10   p s i  
€& = 0.0618  in  
H z =  0.0609  in 
Hv= 0 .0146  in  
B = 3 i n  
L = 36  in  

?- V 

1 

0.1 

0.01 
1 0  1 0 0  1000 

FREQUENCY CHZI 

Figure 7 2 .  - Theoret ical ly   predicted ‘and experimentally  determined  values 
of s t ruc ture  loss factor of a two-elast ic-element   f ree-free 
beam  having a geometr ical   parameter  Y = 4.60  and a s h e a r  
parameter coef f ic ien t  C = 0.123 
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Figure  73. - Theoretically  predicted  and  experimentally  determined  values 
of s t ructure  loss factor of a two-elast ic-element   f ree-free 
beam  having a geometr ical   parameter  Y = 5.98 and a s h e a r  
parameter   coeff ic ient  C = 0.071 
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Figure 74 .  - Theoretically  predicted an.d experimentally  determined  values 
of structure loss factor of  a two-elastic-element  free-free 
beam  having a geometrical  parameter Y = 4.67  and a shear 
parameter  coefficient C = 1 . 0 1  
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Figure 75. - Theoretically  predicted  and  experimentally  determined  values 
of structure loss factor of a two-elastic-element  free-free 
beam  having a geometrical  parameter Y = 2 .59  and a shear 
parameter  coefficient C = 1.04 
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Tigure  76. - Theoretically  predicted  and  experimentally  determined  values 
of s t ruc ture  loss factor of a two-elast ic-element   f ree-free 
beam  having a geometrical   parameter Y = 0.837  and a s h e a r  
parameter coef f ic ien t  C = 1.72 
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Figure 77 .  - Theoretically  predicted  and  experimentally  determined  values 
of s t ructure  loss factor  of a two-elast ic-element   f ree-free 
beam  having a geometrical   parameter Y = 0 . 6 4 2  and a s h e a r  
parameter   coeff ic ient  C = 6.21  
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Figure 78.  - Theoretically  predicted  and  experimentally  determined  values 
of s t ruc ture  loss factor  of a two-elast ic-element   f ree-free 
beam  having a geometr ical   parameter  Y = 0.972  and a s h e a r  
parameter   coeff ic ient  C = 4.22 
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Figure 79. - Theoretically  predicted  and  experimentally  determined  values 
of structure loss factor of  a two-elastic-element  free-free 
beam  having a geometrical  parameter Y = 0.466 and a shear 
parameter  coefficient C = 4.89 
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Figure 80.  - Theoret ical ly   predicted  and  experimental ly   determined  values  
of s t ruc ture  loss factor of a two-elast ic-element   f ree-free 
beam  having a geometr ical   parameter  Y = 0.795  and  a s h e a r  
parameter   coef f ic ien t  C = 3.27  
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Figure 81. - Theoretically  predicted  and  experimentally  determined  values 
of s t ruc ture  loss factor  of a two-elast ic-element   f ree-free 
beam  having a geometr ical   parameter  Y = 0 .464  and a shea r  
parameter coef f ic ien t  C = 2.75  
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Figure  8 2. - Theoretically  predicted  and  experimentally  determined  .values 
of s t ruc ture  loss factor  of a   two-elast ic-element   f ree-free 
beam  having a geometr ical   parameter  Y = 0 .672  and a s h e a r  
parameter   coef f ic ien t  C = 2.06 
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Figure 83. - Theoretically  predicted  and  experimentally  determined  values of 
struature  loss  factor of  a symmetrical  three-elastic-element 
free-free beam having a geometrical  parameter Y = 4.14  and 
a shear parameter  coefficient C = 0.372 

180 



r- 

1 

0.1 

0.01 
1 

E~ = 1 0 . 2  X 1ozps i  
Ea = 10.2  X 10 p s i  

= 0.0402  in  
Hz = 0.0782  in  
Hv= 0 .0049  in  
B = 3 i n  

LE, L = 36 i n  

0 1 0 0  

FREQUENCY CHZI 

1000 

Figure 84.  - Theoret ical ly   predicted  and  experimental ly   determined  values  of 
s t ruc ture  loss factor of a symmetr ical  three-elast ic-element  
free-free beam having a geometr ical   parameter  Y = 6.  51 and  
a shear   parameter   coef f ic ien t  C = 0.305 
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Figure 85. - Theoretically  predicted  and  experimentally  determined  values of 
s t ruc ture  loss factor  of a symmetr ical   three-elast ic-element  
free-free  beam  having a geometr ical   parameter  Y = 1.33   and  
a shear   parameter   coeff ic ient  C = 1.04  
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Figure 86 .  - Theoret ical ly   predicted  and  experimental ly   determined  values  of 
s t ruc ture  loss fac tor  of a symmetr ical   three-elast ic-element  
free-free beam  having a geometr ical   parameter  Y = 6.52  and 
a shear   parameter   coeff ic ient  C = 0.135 
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Figure 8 7 .  - Theoretically  predicted  and  experimentally  determined  values of 
s t ruc ture  loss factor  of a symmetr ical   three-elast ic-element  
free-free  beam  having a geometr ical   parameter  Y = 6 . 7 8  and 
a shear   parameter   coeff ic ient  C = 0.155 
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Figure 88. - Theoretically  predicted  and  experimentally  determined  values of 
structure loss factor of a symmetrical  three-elastic-element 
free-free  beam  having a geometrical  parameter Y = 1 2 . 2  and 
a shear  parameter  coefficient C = 0.519 
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Figure 89 .  - Theoretically  predicted  and  experimentally  determined  values of 
structure loss factor of a symmetrical  three-elastic-element 
free-free  beam  having a geometrical  parameter Y = 1.82  and 
a shear  parameter  coefficient C = 1.39 
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x-e 9 0 .  - Theoretically  predicted  and  experimentally  determined  values of 
structure loss factor of a symmetrical  three-elastic-element 
free-free beam having a geometrical  parameter Y = 2.51, and 
a  shear  .parameter  coefficient C = 1 . 7 7  
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Figure 91.  - Theoretically  predicted  and  experimentally  determined  values of 
structure loss factor of a symmetrical three-elastic-element 
free-free  beam  having a geometrical  parameter Y = 5.99  and 
a shear  parameter  coefficient C = 0.635 
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Figure  92. - Theoret ical ly   predicted  and  experimental ly   determined  values  of 
s t ruc ture  loss factor  of a symmetrical th ree-e las t ic -e lement  
free-free beam  having a geometrical parameter  Y = 1.37   and  
a shear   parameter   coef f ic ien t  C = 2 .51  
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Figure 9 3 .  - Theoretically  predicted  and  experimentally  determined  values of 
s t ructure  loss factor  of a symmetr ical   three-elast ic-element  
free-free  beam  having a geometr ical   parameter  Y = 3 . 3  2 and 
a shear   Parameter   coeff ic ient  C = 0 , 8 9 3  
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Figure 94.  - Theoretically  predicted  and  experimentally  determined  values of 
s t ruc ture  loss fac tor  of a symmetr ical   three-elast ic-element  
free-free beam  having a geometr ical   parameter  Y = 0 . 3  1 6  and 
a shear   parameter   coeff ic ient  C = 3.50 
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Figure 9 5 .  - Theoretically  predicted  and  experimentally  determined  values of 
structure loss factor of a symmetrical three-elastic-element 
free-free beam  having a geometrical  parameter Y = 0 .974  and 
a shear  parameter  coefficient C = 0.930 
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Figure 96. -. Theoretically  predicted  and  experimentally  determined  values of 
structure  loss  factor of'a symmetrical  three-elastic-element 
fre.e-free  beam  having.  a'geometrical  parameter Y = 0.347  and 
a shear  parameter  coefficient C = 3.10 
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Figure  97. - Theoretically  predicted  and  experimentally  determined  values of 
s t ructure  loss factor of a symmetr ical   three-elast ic-element  
free-free beam having a geometrical   parameter Y = 0.594  and 
a shear   parameter   coef f ic ien t  C = 0.67 1 
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Figure 98. - Theoretically  predicted  and  experimentally deter-mined values of 
structure loss factor of a symmetrical  three-elastic-element 
free-free  beam  having a geometrical  parameter Y = 0.889 and 
a shear  parameter  coefficient C = 0.9 25  
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Figure 9 9 .  - Theoretically  predicted  and  experimentally  determined  values of 
structure loss factor of a symmetrical  three-elastic-element 
free-free  beam  having a geometrical  parameter Y = 0.610 and 
a shear Darameter  coefficient C = 2.18 
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Figure  100. - Theoretically  predicted  and  experimentally  determined  values of 
s t ructure  loss factor of a symmetr ical   three-elast ic-element  
free-free beam having a geometrical parameter Y = 1.17   and  
a shear   parameter   coef f ic ien t  C = 1.06 
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Figure 1 0  1. - Theoretically  predicted  and  experimentally  determined  values of 
s t ructure  loss factor  of a symmetr ical   three-elast ic-element  
free-free  beam  having a geometrical   parameter Y = 0. 705  and 
a shear   parameter   coef f ic ien t  C = 2.38  
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Figure  102. - Theoretically  predicted  and  experimentally  determine.d  values of 
s t ruc tu re  loss factor of a symmetr ical   three-elast ic-element  
free-free beam having a geometr ical  parameter Y = 1 .42   and  
a shear   parameter   coef f ic ien t  C = 0.965 
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Figure  103. - Theoretically  predicted  and  experimentally  determined  values of 
s t ruc ture   loss   fac tor  of a symmetr ical   three-elast ic-element  
free-free  beam  having a geometr ical   parameter  Y = 1. 56 and 
a shear   parameter   coeff ic ient  C = 0.748 
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Figure 104. - Theoretically  predicted  and  experimentally  determined  values of 
s t ructure  loss factor of an  unsymmetr ical   three-elast ic-element  
free-free  beam  having a geometr ical   parameter  Y = 4.06 and a 
shear   parameter   coeff ic ient  C = 0.353 
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Figure  105. - Theoretically  predicted  and  experimentally  determined  values of 
s t ruc ture  loss fac tor  of an  unsymmetrical   three-elastic-element 
free-free beam  having a geometrical   parameter Y = 4.63  and a 
shear   parameter   coeff ic ient  C = 0.352 
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Figure 106. - Theoretically  predicted  and  experimentally  determined  values of 
s t ruc ture  loss factor of an  unsymmetr ical   three-elast ic-element  
free-free  beam  having a geometr ical   parameter  Y = 1 . 2 9  and a 
shear   parameter   coeff ic ient  C = 1.01 
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Figure 107 .  - Theoretically  predicted  and  experimentally  determined  values of 
structure loss factor of an  unsymmetrical  three-elastic-element 
free-free  beam  having a geometrical  parameter Y = 2 . 6 8  and a 
shear  parameter  coefficient C = 1 . 4 1  
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Figure  108. - Theoretically  predicted  and  experimentally  determined  values of 
structure loss factor of an N identical-elastic-laminate free- 
free  beam  having  the number of laminates N = 2,  the  viscoelastic 
thickness  parameter V = 0.091 , and  the  shear  parameter  coefficient 
C = 0.162 
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Figure 1 0 9 .  - Theoretically  predicted  and  experimentally  determined  values of 

structure  loss  factor of an N identical-elastic-laminate free- 
free beam having  the number of laminates N. = 3 ,  the  viscoelastic 
thickness  parameter V = 0 .094 ,  and  the  shear  parameter  coefficient 
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Figure 11 0. - Theoretically  predicted  and  experimentally  determined  values of 

structure loss factor of an N identical-elastic-laminate  free- 
free beam  having  the number of laminates N = 4 ,  ' the  viscoelastic 
thickness  parameter V = 0 . 0 9 8 ,  and  the  shear  parameter  coefficient 
C = 0 . 1 5 2  
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Figure 111. - Comparison of the  experimental   and  theoret ical   values  of loss 
factor   for   the  composi te   s t ructural   beam  specimens  where (e) 
refers   to   two-elast ic-element   s t ructures  ( 0 )  refers  to  symmetrical  
th ree-e las t ic -e lement   s t ruc tures ,  (0) refers to unsymmetrical  three- 
e las t ic -e lement   s t ruc tures ,   and  ( X )  re fers  to N ident ica l -e las t ic -  
lamina te   s t ruc tures  
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THEORETICAL RESONANT FREQUENCY, (frit 

Comparison of the  experimental  and  theoretical  values of resonant 
frequency  for  the  composite  structural beam specimens,  where (*) 
refers  to  two-elastic-element  structures 8 ( 0 )  refers  to  symmetrical 
three-elastic-element  structures , (0) refers  to  unsymmetrical  three- 
elastic-element  structures , and ( X )  refers  to N identical-elastic- 
laminate  structures 
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Figure 113,  - Comparison of the  standardized  probability  density of 
tn(q, /TIt), shown as  vertical  bars,  with  that of a 
normal distribution,  shown as  the  continuous  curve 
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Figure 114. - Comparison of the  standardized  probability  density of 
Ln ( f r ) e / ( f r ) t 3 ,  shown as  vertical  bars,  with  that of a 
normal distribution,  shown  as  the  continuous  curve 
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Figure 11 5. - Schematic  diagram of a cantilever beam test  configuration 
for steady-state  vibration  excitation 
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Figure 116. - Comparison of theoret ical   and  experimental   t ransmissibi l i ty  
cu rves  of a two-elast ic-element   s t ructural   composi te   damp- 
free beam 
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Figure 117.  - Comparison of theoret ical   and  experimental   t ransmissibi l i ty  
c u r v e s  of a symmetr ical   three-elast ic-element   c lamp-free 
s t ructural   composi te   beam 
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Figure 118. - Schematic  diagram of a laminated  plate  considered  in the 
thermal  conductivity  study 


